«Было бы здорово учиться там, где такие классные люди»
Фарид Багиров, выпускник 2021 года
До поступления в магистратуру я учился в Академическом университете (АУ) на теоретического физика. Машинное обучение меня привлекло тем, что это – одно из самых развивающихся и популярных направлений науки в настоящее время. У него есть множество применений как в развлекательных, так и в полезных областях. Помимо этого, большинство методов обладают математической базой, которая дает большую уверенность в работе моделей.
Я выбрал «Машинное обучение и анализ данных», так как знал и слышал от знакомых, что преподаватели на этой программе хорошо обучают, и я не пожалею о своем решении. Был, конечно, альтернативный вариант в Питерской Вышке – программа «Программирование и анализ данных», однако она не рассчитана на тех, кто хочет с плюс-минус нуля изучать машинное обучение.
Самым интересным во время обучения для меня была работа над проектами. Часто можно было выбрать любопытную задачу и увидеть, как работают разные методы, изученные ранее. Также самостоятельное исследование литературы и открытие новых методов в работе – достаточно увлекательный процесс. Что касается курсов, то хочется отметить практики в до-карантинное время. Многие из них, особенно занятия Михаила Слабодкина по алгоритмам, были очень полезны и интересны.
В моих планах поступить в аспирантуру ВШЭ, продолжающую магистерскую программу. Также собираюсь работать в лаборатории JetBrains Research, где писал дипломную работу.
Абитуриентам я бы посоветовал не сомневаться. Если есть желание заниматься машинным обучением, то программы «Машинное обучение и анализ данных» и «Программирование и анализ данных» – одни из лучших мест, в которых это можно делать.
Елизавета Вирко, выпускница 2021 года
Когда я еще училась на программе «Прикладная математика и информатика» в СПбГУ, друзья мне рассказали, что в Питерской Вышке появляется новое направление, связанное с машинным обучением. Я тогда мало знала об этой области, но мне очень хотелось применить имеющиеся у меня знания математики и статистики на практике. Я просмотрела список курсов программы и поняла, что это именно то, что я искала.
Самой важной и полезной частью обучения я считаю курсовые и дипломные проекты. Нам предлагали довольно большой список проектных тем на выбор, всегда можно было найти интересное для себя. Кроме того, сам процесс отбора на проекты – собеседования – является довольно полезным. Моя курсовая и дипломная работы касались применения машинного обучения в биологии. В первом проекте я вместе с командой JetBrains Research определяла гены, поведение которых меняется под воздействием пластификатора BPA, а во втором занималась предсказанием побочных эффектов комбинаций лекарств. По результатам обоих проектов мы написали статьи, одна из которых сейчас подана на публикацию в биологический журнал, а вторая – на конференцию по машинному обучению NeurIPS 2021.
До обучения на программе я знала о машинном обучении совсем немного, но сейчас оно определенно стало одним из наиболее интересующих меня направлений. Так что не бойтесь пробовать что-то новое. Даже если вы пока чего-то не знаете, не переживайте, ведь всегда можно научиться.
Виктория Фролова, студентка 1 курса
Я узнала о магистерской программе, ещё учась на третьем курсе «Экономики» в Питерской Вышке. О том, что открылась такая магистратура, мне рассказал друг с социологии, с которым мы вместе учились на майноре «Обработка и анализ данных», и которому эта программа тоже приглянулась. Я внимательно изучила информацию на сайте Вышки, поговорила с парой студентов, которые на ней учились, и несмотря на то, что она была тогда совсем новой, сразу поняла – это то место, куда я хотела бы поступить.
Главное, что зацепило меня так сильно, – это набор дисциплин. Он оказался очень прикладным и интересным. Мне кажется, для современного студента вообще важно понимать, что в университете его познакомят с тем стеком технологий, который будет актуален на рынке труда и позволит ему претендовать на высокооплачиваемые позиции. И это понимание возникло у меня сразу, когда я ознакомилась с учебным планом образовательной программы. Я вижу смысл в обучении здесь, и я осознаю, как мне пригодятся полученные знания в построении карьеры.
Еще одна особенность: программа подходит для ребят, желающих сменить профиль, а именно это я и собиралась сделать. Последним аргументом в пользу этой магистратуры было мое желание остаться в стенах НИУ ВШЭ и в самом Петербурге. Я люблю нашу Питерскую Вышку за неповторимую университетскую атмосферу, и так или иначе хотела бы продолжить развиваться в её стенах.
Для студентов, которые как и я меняют профиль, важно осознавать, что даже успешная подготовка к вступительным испытаниям – письменному экзамену по математике и собеседованию по программированию – совсем не гарант того, что им будет в дальнейшем легко здесь учиться. Нужно быть инициативным, например, предварительно ознакомиться с учебным планом и начать самостоятельно изучать фундаментальные дисциплины на Coursera или Stepik (как вариант, можно вспомнить математическую статистику или открыть для себя мир алгоритмов). Это решение дает студенту преимущество: ознакомившись с базовыми понятиями до поступления, у него остается больше времени в учебном году на то, чтобы изучить эти дисциплины более глубоко и вникнуть в более сложные концепции, которые понять без участия преподавателя и обсуждения в коллективе очень сложно. Когда почти все изучаемые дисциплины оказываются новыми для студента, приходится расставлять приоритеты и оптимизировать время, чтобы успеть всё.
Могу уверенно сказать, если вы меняете профиль, то ваши занятия, как перед вступительными, так и перед началом учебного года, должны быть регулярными: каждый день решайте хотя бы пару задачек по математике и программированию. Помимо Coursera и Stepik, можно обратить внимание на Problems.ru , Leetcode.com и литературу издательства МЦНМО.
Конечно, не стоит ждать, что исключительно учебных курсов будет достаточно, чтобы освоить совершенно новые дисциплины. Обучение – дорога через тернии, и всё же к звёздам, поэтому нужно настраиваться на регулярное обсуждение материала с однокурсниками, постоянные вопросы преподавателям, чтение дополнительной литературы и просмотр онлайн-курсов, чтобы учеба давала свои плоды.
Ярослав Соколов, студент 1 курса
Машинным обучением я заинтересовался и стал его изучать, когда учился в бакалавриате на программе «Программная инженерия» в СПбГУ. В то же время я познакомился с ребятами из тогда еще АУ, которые постоянно занимали первые места на различных хакатонах. Примерно тогда и появилась мысль, что было бы здорово учиться там, где такие классные люди. Благодаря новым знакомствам и общению у меня сформировалось мнение: «Машинное обучение и анализ данных» — единственная программа в Питере, где могут преподавать машинное обучение глубоко и всеобъемлюще. И после года обучения в магистратуре мое мнение не изменилось.
В первом семестре было много классных вводных курсов, и я смог подтянуть фундаментальные знания, которых у меня не появилось за период самостоятельного изучения области. А во втором семестре почти каждый предмет основывался на семестровом проекте.
Я бы посоветовал не надеяться, что в университете дадут абсолютно все необходимые знания. Надо участвовать в различных соревнованиях, проходить дополнительные онлайн-курсы, читать литературу, устраиваться на стажировки.