We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Basic Statistics

2024/2025
Academic Year
RUS
Instruction in Russian
3
ECTS credits
Course type:
Elective course
When:
1 year, 2 module

Instructor

Программа дисциплины

Аннотация

Курс посвящен введению в статистический анализ данных. Слушатели познакомятся с такими методами статистического анализа как дисперсионный, регрессионный и кластерный анализ. Мы научимся сравнивать группы между собой, рассчитывать коэффициенты корреляции и строить регрессионные уравнения. Основной акцент делается на математических идеях, интуиции и логике, которые обуславливают методы и расчетные формулы. Изученный материал будет применим для решения широкого круга задач, возникающих в рамках исследовательской работы практически любого направления. Будут рассмотрены методы анализа данных, которые наиболее часто применяются при статистической обработке результатов в широчайшем круге научных и прикладных областей. Помимо теоретических заданий слушателей ожидают интересные практические задачи. Знаний, полученных в результате прохождения данного курса, будет достаточно чтобы научиться более быстро и эффективно решать различные задачи, связанные с анализом данных.
Цель освоения дисциплины

Цель освоения дисциплины

  • Формирование комплексного представления об основных понятиях статистического анализа и освоение базовых методов статистического анализа.
Планируемые результаты обучения

Планируемые результаты обучения

  • Понимание основных понятий статистического анализа
  • Слушатели знают о принципах корреляционного и регрессионного анализа, способны использовать данные виды анализа и интерпретировать полученные с их помощью результаты.
  • Слушатели понимают принципы логистического регрессионного анализа, умеют применять его на практике и интерпретировать результаты.
  • Слушатели умеют выбирать и применять на практике подходящие методы для сравнения средних значений
  • Слушатели умеют выбирать и применять на практике подходящие непараметрические методы статистического анализа.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Основные понятия статистического анализа
  • Сравнение средних
  • Корреляция и регрессия
  • Анализ номинативных данных
  • Логистическая регрессия и непараметрические методы
  • Кластерный анализ и метод главных компонент
Элементы контроля

Элементы контроля

  • неблокирующий Результаты освоения онлайн-курса
    Необходимо выслать преподавателю на официальную рабочую почту сертификат о прохождении онлайн-курса 'Основы статистики' на платформе Stepik.
  • неблокирующий Экзамен
    Экзамен представляет собой тест по всем темам онлайн-курса 'Основы статистики' на платформе Stepik.
  • неблокирующий Контрольная работа
    Контрольная работа представляет собой тест по пройдённым темам онлайн-курса 'Основы статистики' на платформе Stepik.
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 2nd module
    0.2 * Контрольная работа + 0.4 * Результаты освоения онлайн-курса + 0.4 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Agresti, A. (2015). Foundations of Linear and Generalized Linear Models. Hoboken, New Jersey: Wiley. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=941245
  • Field, A. V. (DE-588)128714581, (DE-627)378310763, (DE-576)186310501, aut. (2012). Discovering statistics using R Andy Field, Jeremy Miles, Zoë Field.

Рекомендуемая дополнительная литература

  • Gray, V. (2017). Principal Component Analysis : Methods, Applications, and Technology. Hauppauge, New York: Nova Science Publishers, Inc. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1464656
  • Rutherford, A. (2001). Introducing Anova and Ancova : A GLM Approach. London: SAGE Publications Ltd. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=251737
  • Основы статистики: Учебное пособие / С.А. Канцедал. - М.: ИД ФОРУМ: ИНФРА-М, 2011. - 192 с.: ил.; 60x90 1/16. - (Профессиональное образование). (переплет) ISBN 978-5-8199-0439-8 - Режим доступа: http://znanium.com/catalog/product/251392

Авторы

  • Морева Юлия Евгеньевна
  • Ильина Мария Ивановна