• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Линейная алгебра и геометрия

2019/2020
Учебный год
RUS
Обучение ведется на русском языке
5
Кредиты
Статус:
Курс обязательный
Когда читается:
1-й курс, 3, 4 модуль

Преподаватели

Программа дисциплины

Аннотация

Целями освоения дисциплины «Линейная алгебра и геометрия» являются формирование у студентов теоретических знаний и практических навыков по основам линейной алгебры, в частности уметь решать системы линейных уравнений, владеть понятиями матрицы, векторного пространства, базиса, линейного отображения, спектра линейного оператора, квадратичной формы, тензора, понимать их взаимосвязь, а так же уметь решать с помощью этих понятий задачи нахождения расстояния между аффинными подпространствами, минимума квадратичной формы на сфере, применять понятие спектра графа для получения различных свойств графов. В результате освоения дисциплины студент должен: − Знать основные понятия и факты линейной алгебры, такие как матрица, векторное пространство, линейная независимость, базис, размерность, ранг, спектр линейного оператора. − Уметь находить базис подпространства заданного набором векторов или системой линейных условий, ранг линейного отображения, спектр и жорданову форму линейного оператора, сигнатуру вещественной квадратичной формы, ортогонализацию базиса евклидового пространства, спектр графа. − Иметь навыки (приобрести опыт) обращения с основными конструкциями и объектами линейной алгебры.
Цель освоения дисциплины

Цель освоения дисциплины

  • формирование у студентов теоретических знаний и практических навыков по основам линейной алгебры, в частности уметь решать системы линейных уравнений, владеть понятиями матрицы, векторного пространства, базиса, линейного отображения, спектра линейного оператора, квадратичной формы, тензора, понимать их взаимосвязь, а так же уметь решать с помощью этих понятий задачи нахождения расстояния между аффинными подпространствами, минимума квадратичной формы на сфере, применять понятие спектра графа для получения различных свойств графов.
Результаты освоения дисциплины

Результаты освоения дисциплины

  • Знает метод Гаусса в решении систем линейных уравнений, Владеет понятиями: векторные пространства, линейная зависимость, базис, теорема о равномощности базисов, линейное отображение, теорема о размерностях ядра и образа, ранг, прямая сумма, алгебра матриц, присоединѐнная матрица
  • Владеет понятиями: линейные операторы; определитель и след оператора; многочлен от оператора; собственные числа; критерий диагонализуемости; оператор на факторпространстве; теорема Гамильтона-Кэли; диаграммы Юнга.
  • Знает билинейные формы, ранг, приведение квадратичной формы к диагональному виду, критерий Сильвестра, дискриминант формы, евклидовы и унитарные пространства, ортогонализация, расстояние и ортогональная проекция. Владеет понятиями: канонические изоморфизмы, тензорное произведение линейных отображений, кронекерово произведение матриц, симметричные тензоры, кососимметричные тензоры, алгебра Грассмана, теорема Бине-Коши
  • Владеет понятиями: максимум квадратичной формы на сфере, принцип Куранта-Фишера, чередование собственных чисел при ограничении на подпространство, метод главных компонент, SVD-разложение Знает: спектр графа, характеризация двудольности, сильно регулярные графы, спектр произведения графов, спектр графа и размер максимального независимого множества
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Основы линейной алгебры
  • Линейные операторы
  • Полилинейная алгебра
  • Спектр оператора в задачах максимизации и в теории графов
Элементы контроля

Элементы контроля

  • неблокирующий Created with Sketch. Домашнее задание No1
  • неблокирующий Created with Sketch. Домашнее задание No2
  • неблокирующий Created with Sketch. Домашнее задание No3
  • неблокирующий Created with Sketch. Домашнее задание No4
  • неблокирующий Created with Sketch. Устный экзамен No1
  • неблокирующий Created with Sketch. Устный экзамен No2
Промежуточная аттестация

Промежуточная аттестация

  • Промежуточная аттестация (3 модуль)
    0.25 * Домашнее задание No1 + 0.25 * Домашнее задание No2 + 0.5 * Устный экзамен No1
  • Промежуточная аттестация (4 модуль)
    0.25 * Домашнее задание No3 + 0.25 * Домашнее задание No4 + 0.5 * Устный экзамен No2
Список литературы

Список литературы

Рекомендуемая основная литература

  • Бурмистрова Е. Б., Лобанов С. Г.-ЛИНЕЙНАЯ АЛГЕБРА. Учебник и практикум для СПО-М.:Издательство Юрайт,2019-421-Профессиональное образование-978-5-9916-9122-2: -Текст электронный // ЭБС Юрайт - https://biblio-online.ru/book/lineynaya-algebra-427070

Рекомендуемая дополнительная литература

  • Под ред. Кремера Н.Ш.-ЛИНЕЙНАЯ АЛГЕБРА 3-е изд., испр. и доп. Учебник и практикум для бакалавриата и специалитета-М.:Издательство Юрайт,2019-422-Бакалавр и специалист-978-5-534-08547-1: -Текст электронный // ЭБС Юрайт - https://biblio-online.ru/book/lineynaya-algebra-432050