We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Mathematics.Mathematical Analysis I

2022/2023
Academic Year
RUS
Instruction in Russian
6
ECTS credits
Course type:
Elective course
When:
1 year, 1, 2 module

Instructors


Runev, Evgeniy V.

Программа дисциплины

Аннотация

Целью освоения дисциплины «Математический анализ» является изучение разделов «Пределы функций», «Дифференциальное исчисление», «Интегральное исчисление», «Числовые и функциональные ряды» и «Дифференциальные уравнения и системы дифференциальных уравнений», позволяющие студенту ориентироваться в таких дисциплинах, как «Теория вероятностей и математическая статистика», «Методы оптимальных решений – I», «Методы оптимальных решений – II», «Микроэкономика», «Макроэкономика», «Теория игр», «Эконометрика». Курс "Математический анализ"; будет использоваться в теории и приложениях дисциплин экономического цикла. Материалы курса могут быть использованы для разработки и применения численных методов решения задач из многих областей знания, для построения и исследования математических моделей в различных предметных областях, в первую очередь в экономике. Дисциплина является модельным прикладным аппаратом для изучения студентами-экономистами математической компоненты своего профессионального образования.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целью освоения дисциплины «Математический анализ I» является изучение начального курса математического анализа, который включает базовые разделы: «Основы теории множеств», «Пределы функций», «Дифференциальное исчисление. Курс «Математический анализ I» будет в дальнейшем использоваться в теории и приложениях дисциплин экономического цикла. Материалы курса могут быть использованы для разработки и применения численных методов решения задач из многих областей знания, для построения и исследования математических моделей в различных предметных областях, в первую очередь в экономике. Дисциплина является теоретическим и модельным прикладным аппаратом для изучения студентами-экономистами математической компоненты своего профессионального образования
Планируемые результаты обучения

Планируемые результаты обучения

  • демонстрирует знание базовых понятий теории множеств и операций над ними, основных функций и их свойств, умение строить, в том числе с помощью простейших преобразований, графики функций, работать с множествами, знание понятий обратная функция, композиция функций
  • демонстрирует знание понятий предела функции, непрерывности функции, умение вычислять пределы, исследовать функцию на непрерывность
  • демонстрирует умение дифференцировать функции, вычислять пределы функций с помощью производной, исследовать функции и строить их графики с помощью производных
  • демонстрирует умение работать с функциями нескольких переменных – находить ООФ, линии и поверхности уровня
  • демонстрирует умение работать с функциями нескольких переменных – находить ООФ, находить экстремум функции
  • демонстрирует умение работать с функциями нескольких переменных –решать задачи на нахождение частых производных 1-го и 2-го порядков, экстремумов ФНП, вычислять производную по направлению и градиент функции
  • Демонстрирует умение выделять главную часть функции в окрестности точки с помощью формулы Тейлора, применяет к вычислению пределов и составляет асимптотические формулы в окрестности точки.
  • Линеаризует произвольное отображение из R^n в R^m в окрестности точки.
  • Умеет находить матрицу Якоби для композиций отображений., включая неявные функции и системы неявных функций.
  • Умеет составлять уравнения касательных, нормалей ,касательных плоскостей и нормальных плоскостей к поверхности в R^n.
  • Умеет дифференцировать вектор-функции, находить скалярное ,векторное и смешанное произведение вектор-функций и их производные.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Введение. Элементы теории множеств и функций
  • Предел и непрерывность функции одной переменной
  • Дифференцируемые функции одной переменной
  • Множества точек и последовательности в n-мерном пространстве
  • Функции нескольких переменных
  • Дифференцируемые функции нескольких переменных
  • Факультативные семинары
Элементы контроля

Элементы контроля

  • неблокирующий Контрольная работа 3
    Контрольная работа проводится в аудитории или дистанционно (в случае дистанционного формата обучения) в письменной форме, продолжительность определяется ведущим преподавателем и доводится до сведения студентов заблаговременно. Возможно проведение поточных КР. Требования к проведению КР в дистанционном формате доносится до сведения студентов заблаговременно посредством размещения инструкции в LMS (и/или по корпоративной почте)
  • неблокирующий Самостоятельная работа
    Контрольная работа проводится в аудитории или дистанционно (в случае дистанционного формата обучения) в письменной форме, продолжительность определяется ведущим преподавателем и доводится до сведения студентов заблаговременно. Возможно проведение поточных КР. Требования к проведению КР в дистанционном формате доносится до сведения студентов заблаговременно посредством размещения инструкции в LMS (и/или по корпоративной почте)
  • неблокирующий Экзамен
    Экзамен проводится в аудитории или дистанционно (в случае дистанционного формата обучения) в письменной форме, продолжительность определяется ведущим преподавателем и доводится до сведения студентов заблаговременно. Требования к проведению экзамена в дистанционном формате доносится до сведения студентов заблаговременно посредством размещения инструкции в LMS (и/или по корпоративной почте)
  • неблокирующий Контрольная работа 1
    Контрольная работа проводится в аудитории или дистанционно (в случае дистанционного формата обучения) в письменной форме, продолжительность определяется ведущим преподавателем и доводится до сведения студентов заблаговременно. Возможно проведение поточных КР. Требования к проведению КР в дистанционном формате доносится до сведения студентов заблаговременно посредством размещения инструкции в LMS (и/или по корпоративной почте)
  • неблокирующий Контрольная работа 2
    Контрольная работа проводится в аудитории или дистанционно (в случае дистанционного формата обучения) в письменной форме, продолжительность определяется ведущим преподавателем и доводится до сведения студентов заблаговременно. Возможно проведение поточных КР. Требования к проведению КР в дистанционном формате доносится до сведения студентов заблаговременно посредством размещения инструкции в LMS (и/или по корпоративной почте)
  • неблокирующий Индивидуальное домашнее задание
Промежуточная аттестация

Промежуточная аттестация

  • 2022/2023 учебный год 2 модуль
    0.08 * Индивидуальное домашнее задание + 0.06 * Самостоятельная работа + 0.15 * Контрольная работа 2 + 0.17 * Контрольная работа 1 + 0.15 * Контрольная работа 3 + 0.39 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Ильин В.А., Садовничий В.А., Сендов Б.Х. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ Ч. 1 4-е изд., пер. и доп. Учебник для бакалавров - М.:Издательство Юрайт - 2016 - 660с. - ISBN: 978-5-9916-2733-7 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-ch-1-389342
  • Кудрявцев Л.Д. - КУРС МАТЕМАТИЧЕСКОГО АНАЛИЗА В 3 Т. ТОМ 2 В 2 КНИГАХ 6-е изд., пер. и доп. Учебник для бакалавров - М.:Издательство Юрайт - 2016 - 720с. - ISBN: 978-5-9916-6126-3 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/kurs-matematicheskogo-analiza-v-3-t-tom-2-v-2-knigah-387530

Рекомендуемая дополнительная литература

  • Путко Б.А., Тришин И.М., Кремер Н.Ш. - под ред. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ В 2 Т. Учебник и практикум для академического бакалавриата - М.:Издательство Юрайт - 2016 - 634с. - ISBN: 978-5-9916-6238-3 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-v-2-t-388079
  • Шипачев В.С. - ВЫСШАЯ МАТЕМАТИКА. ПОЛНЫЙ КУРС 4-е изд., испр. и доп. Учебник для академического бакалавриата - М.:Издательство Юрайт - 2016 - 607с. - ISBN: 978-5-9916-4358-0 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/vysshaya-matematika-polnyy-kurs-388659

Авторы

  • Рунев Евгений Валентинович
  • Широков Николай Алексеевич
  • Алексеева Татьяна Анатольевна