We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Deep Learning

2024/2025
Academic Year
RUS
Instruction in Russian
5
ECTS credits
Course type:
Elective course
When:
3 year, 3, 4 module

Instructor

Программа дисциплины

Аннотация

Глубинное обучение – популярная область, в которой используются нейронные сети сложной архитектуры. Подобные системы дают лучшие результаты в таких областях, как обработка изображений, видео, звука и текста. В рамках курса будут рассмотрены основные типы архитектур, принципы работы и обучения глубоких нейронных сетей, а также проведены практические занятия по вышеупомянутым областям применения. Является дисциплиной по выбору. Для освоения дисциплины необходимы компетенции, полученные в ходе изучения дисциплин «Машинное обучение», «Методы оптимизации».
Цель освоения дисциплины

Цель освоения дисциплины

  • Формирование у студентов теоретических знаний и практических навыков по основам построения больших нейронных сетей для глубинного обучения.
Планируемые результаты обучения

Планируемые результаты обучения

  • Узнать способы построения глубоких нейронных сетей
  • Умеет применять глубинное обучение для решения характерных задач
  • Имеет навыки применения математического аппарата и алгоритмов работы с глубинными нейронными сетями
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Раздел 1. Алгоритмы оптимизации и регуляризации
  • Раздел 2. Обработка и анализ изображений
  • Раздел 3. Обработка естественного языка, конкурентные и генеративные нейронные сети
  • Раздел 4. Оптимизация гиперпараметров, обучение с подкреплением
Элементы контроля

Элементы контроля

  • неблокирующий Домашнее задание №1
    Домашнее задание No1 выдается студентам в одном варианте и состоит из 3 задач. Срок выполнения домашнего задания - 4 недели. Форма представления обучающимися домашнего задания – реализованный на любом языке программирования алгоритм.
  • неблокирующий Домашнее задание №2
    Домашнее задание No2 выдается студентам в одном варианте и состоит из 3 задач. Срок выполнения домашнего задания - 4 недели. Форма представления обучающимися домашнего задания - реализованный на любом языке программирования алгоритм.
  • блокирующий Устный экзамен
    Устный экзамен проводится в форме ответов на вопросы экзаменационного билета. Экзаменационный билет содержит два вопроса из перечня вопросов к экзамену. Возможны дополнительные вопросы, в случае если экзаменуемый недостаточно подробно ответил на вопросы билета. На подготовку ответа выделяется 2,5 часа.
  • неблокирующий Домашнее задание №3
    Домашнее задание No3 выдается студентам в одном варианте и состоит из 3 задач. Срок выполнения домашнего задания - 4 недели. Форма представления обучающимися домашнего задания - реализованный на любом языке программирования алгоритм.
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 4th module
    Преподаватель учитывает оценку за текущий контроль (домашние задания). Онакопленная = (Од/з1 + Од/з2 + Од/з3) : 3 Действует следующий способ округления накопленной оценки за текущий контроль: при значениях от 0,1 до 0,4 оценка округляется в меньшую сторону, от 0,5 до 0,9 – в большую. На экзамене студенту не предоставляется возможность получить дополнительный балл для компенсации оценки за текущий контроль. Результирующая оценка за дисциплину рассчитывается следующим образом: ОРезультирующая= 0,5 Онакопленная+0,5 Оэкзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Introduction to deep learning, Charniak, E., 2018

Рекомендуемая дополнительная литература

  • Iba, H. (2018). Evolutionary Approach to Machine Learning and Deep Neural Networks : Neuro-Evolution and Gene Regulatory Networks. Singapore: Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1833749

Авторы

  • Кузнецов Антон Михайлович