We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Calculus 2

2022/2023
Academic Year
RUS
Instruction in Russian
5
ECTS credits
Delivered at:
Department of Informatics
Course type:
Compulsory course
When:
2 year, 1, 2 module

Instructors


Андреева Инга Александровна


Gladkaya, Anna


Safronenko, Evgenii

Программа дисциплины

Аннотация

Дисциплина базовой части профессионального цикла. Данная дисциплина служит основой для профессиональной ориентации студентов при выборе дисциплин из вариативной части Программы. Дисциплина направлена на формирование у студентов теоретических знаний и практических навыков по основам таких разделов математического анализа как теория рядов, криволинейные и поверхностные интегралы, элементы векторного анализа, ряды и др. Для освоения дисциплины студентам необходимо иметь знания, полученные в ходе изучения дисциплины «Математический анализ 1».
Цель освоения дисциплины

Цель освоения дисциплины

  • Формирование у студентов теоретических знаний и практических навыков по основам математического анализа.
Планируемые результаты обучения

Планируемые результаты обучения

  • Владеет понятием дифференциальной формы в R 3. Определяет интеграл на площади поверхности. Знает и применяет: формулу Гаусса-Остроградского, формулу Стокса. .
  • Владеет понятием полуколец, умеет производить действия. Проводит арифметические операции с функциями. Знает свойства интеграла, умеет производить действия с интегралом
  • Владеет понятиями абсолютной и условной сходимости. Знает теоремы Мертенса и Абеля о произведении рядов. Знает критерии равномерной сходимости. Знает теоремы о перестановке пределов и перестановке предела и суммы; теоремы об интегрировании и дифференцировании равномерно сходящейся последовательности (ряда). Знает: дифференцируемость отображений из Rn в Rm; Матрицу Якоби; дифференцируемость координатных функций.
  • Владеет понятиями интегрального исчисления. Знает интегралы с параметром и криволинейные интегралы
  • Знает голоморфные функции. Владеет понятиями: неравенство Коши; теорема Лиувилля; основная теорема алгебры. Вычисляет интегралы. Работает с дробно-линейными функциями.
  • Знает точные формулировки основных понятий и умеет интерпретировать их на простых модельных примерах.
  • Представляет математические утверждения и их доказательства, проблемы и их решения ясно и точно в терминах, понятных для профессиональной аудитории, как в письменной, так и в устной формах, применяет специальные методы вычисления пределов, производных и интегралов.
  • Имеет навыки решения типовых задач на основе изучаемого теоретического материала.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Раздел 1. Теория меры и интеграл Лебега
  • Раздел 2. Интегралы с параметром и криволинейные интегралы
  • Раздел 3. Теория функций комплексной переменной
  • Раздел 4. Ряды Фурье
  • Раздел 5. Поверхностные интегралы
Элементы контроля

Элементы контроля

  • неблокирующий Домашнее задание №1
    Домашнее задание №1 выдается студентам в одном варианте и состоит из 9 задач. Каждой задаче присвоен свой балл. Срок выполнения домашнего задания - 2 недели. Форма представления обучающимися домашнего задания - представленные в письменном виде решения задач.
  • неблокирующий Домашнее задание №2
    Домашнее задание №2 выдается студентам в одном варианте и состоит из 9 задач. Каждой задаче присвоен свой балл. Срок выполнения домашнего задания - 2 недели. Форма представления обучающимися домашнего задания - представленные в письменном виде решения задач.
  • неблокирующий Домашнее задание №3
    Домашнее задание №3 выдается студентам в одном варианте и состоит из 10 задач. Каждой задаче присвоен свой балл. Срок выполнения домашнего задания - 2 недели. Форма представления обучающимися домашнего задания - представленные в письменном виде решения задач.
  • неблокирующий Домашнее задание №4
    Домашнее задание №4 выдается студентам в одном варианте и состоит из 9 задач. Каждой задаче присвоен свой балл. Срок выполнения домашнего задания - 2 недели. Форма представления обучающимися домашнего задания - представленные в письменном виде решения задач.
  • неблокирующий Контрольная работа №1
    Контрольная работа проводится в письменной форме
  • неблокирующий Контрольная работа №2
    Контрольная работа проводится в письменной форме
  • неблокирующий Коллоквиум
    Коллоквиум проводится в форме ответов на вопросы билета. Билет содержит два вопроса из перечня вопросов. На подготовку ответа выделяется 2,5 часа.
  • блокирующий Письменный экзамен
    Письменный экзамен проводится в форме ответов на вопросы экзаменационного билета. Экзаменационный билет формируется по 2 вопросам из перечня вопросов к экзамену. На подготовку ответа выделяется 2,5 часа.
Промежуточная аттестация

Промежуточная аттестация

  • 2022/2023 учебный год 2 модуль
    Результирующая оценка за дисциплину рассчитывается следующим образом: Отекущий = 0,15Од/з1 + 0,15Од/з2 + 0,15Од/з3 + 0,15Од/з4 + 0,2К/р1 + 0,2К/р2 ОРезультирующая = 0,3Отекущий + 0,35Околлоквиум + 0,35Оэкзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Привалов, И. И.  Введение в теорию функций комплексного переменного : учебник для вузов / И. И. Привалов. — Москва : Издательство Юрайт, 2021. — 402 с. — (Высшее образование). — ISBN 978-5-534-14313-3. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/468294 (дата обращения: 28.08.2023).
  • Теория функций комплексного переменного : учебник / Е.С. Половинкин. — М. : ИНФРА-М, 2018. — 254 с. — (Высшее образование: Бакалавриат). — www.dx.doi.org/10.12737/6014. - Режим доступа: http://znanium.com/catalog/product/945532

Рекомендуемая дополнительная литература

  • Аксенов, А. П.  Теория функций комплексной переменной в 2 ч. Часть 2 : учебник и практикум для вузов / А. П. Аксенов. — Москва : Издательство Юрайт, 2020. — 333 с. — (Высшее образование). — ISBN 978-5-9916-7419-5. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/451869 (дата обращения: 28.08.2023).
  • Бугров, Я. С.  Высшая математика в 3 т. Том 3. В 2 кн. Книга 1. Дифференциальные уравнения. Кратные интегралы : учебник для вузов / Я. С. Бугров, С. М. Никольский. — 7-е изд., стер. — Москва : Издательство Юрайт, 2020. — 288 с. — (Высшее образование). — ISBN 978-5-9916-8643-3. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/452424 (дата обращения: 28.08.2023).
  • Бугров, Я. С.  Высшая математика в 3 т. Том 3. В 2 кн. Книга 2. Ряды. Функции комплексного переменного : учебник для вузов / Я. С. Бугров, С. М. Никольский. — 7-е изд., стер. — Москва : Издательство Юрайт, 2020. — 219 с. — (Высшее образование). — ISBN 978-5-9916-8645-7. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/452425 (дата обращения: 28.08.2023).
  • Сборник задач по высшей математике в 4 ч. Часть 1 : учебное пособие для вузов / А. С. Поспелов [и др.] ; под редакцией А. С. Поспелова. — Москва : Издательство Юрайт, 2021. — 355 с. — (Высшее образование). — ISBN 978-5-534-02075-5. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/470390 (дата обращения: 28.08.2023).

Авторы

  • Храбров Александр Игоревич
  • Спицина Кристина Станиславовна
  • Кузнецов Антон Михайлович