• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Calculus 2

2021/2022
Academic Year
RUS
Instruction in Russian
5
ECTS credits
Delivered at:
Department of Informatics
Course type:
Compulsory course
When:
2 year, 1, 2 module

Instructors


Андреева Инга Александровна


Симарова Екатерина Николаевна

Программа дисциплины

Аннотация

Дисциплина базовой части профессионального цикла. Данная дисциплина служит основой для профессиональной ориентации студентов при выборе дисциплин из вариативной части Программы. Дисциплина направлена на формирование у студентов теоретических знаний и практических навыков по основам таких разделов математического анализа как теория рядов, криволинейные и поверхностные интегралы, элементы векторного анализа, ряды и др. Для освоения дисциплины студентам необходимо иметь знания, полученные в ходе изучения дисциплины «Математический анализ 1».
Цель освоения дисциплины

Цель освоения дисциплины

  • формирование у студентов теоретических знаний и практических навыков по основам математического анализа.
  • ознакомление студентов с теоретическими основами таких разделов математического анализа как теория пределов и непрерывных функций, теория дифференциального исчислений функции одной переменной, неопределенное, определенное и несобственное интегрирование, дифференциальное исчисление функций многих переменных.
  • формирование практических навыков работы с пределами последовательностей и функций, с непрерывными функциями, с производными и дифференциалами функции одной переменной, с неопределенными, определенными и несобственными интегралами, с непрерывными функциями многих переменных, с частными производными и дифференциалами функций многих переменных.
Планируемые результаты обучения

Планируемые результаты обучения

  • Владеет понятием дифференцируемости функции в точке. Знает геометрический и физический смысл производной. Левая и правая производные. Знает и работает с производными. Знает: формулу Тейлора для многочленов; формулы Тейлора с остатком в форме Пеано и в форме Лагранжа; Формулы Тейлора для ex, sin x, cos x, ln(1+x) и (1+x)p. Знает: локальные максимумы и минимумы; необходимое условие экстремума.
  • Владеет понятиями абсолютной и условной сходимости. Знает теоремы Мертенса и Абеля о произведении рядов. Знает критерии равномерной сходимости. Знает теоремы о перестановке пределов и перестановке предела и суммы; теоремы об интегрировании и дифференцировании равномерно сходящейся последовательности (ряда). Знает: дифференцируемость отображений из Rn в Rm; Матрицу Якоби; дифференцируемость координатных функций.
  • Владеет понятиями интегрального исчисления и несобственных интегралов. Знает метрические и нормированные пространства.
  • Знает и вычисляет предел lim sin x/x. Знает определение степенной функции и ее свойства; определение и непрерывность логарифма. Знает пределы lim (1+1/x)x и lim (1+x)1/x, lim ln(1+x)/x, lim ((1+x)p-1)/x и lim (ax-1)/x.
  • Знает множества, отношения. Владеет понятием предела. Знает неравенство Бернулли. Владеет понятием подпоследовательности; необходимого условия сходимости рядов и простейших свойств сходящихся рядов. Производит арифметические действия с непрерывными функциями, теоремы о стабилизации знака и о непрерывности композиции. Владеет понятиями: Теорема Вейерштрасса; Теорема Больцано-Коши; Теоремы о непрерывных образах отрезка и промежутка.
  • Знает: вычисление интеграла ∫0π/.2 sinn x dx. Владеет понятиями:Формула Валлиса; асимптотика наибольшего биномиального коэффициента; Формула Тейлора с остатком в интегральной форме; иррациональность числа π.
  • Знает: критерий Коши. Владеет понятием группировки членов ряда. Знает критерий сходимости ряда с неотрицательными членами. Знает: признаки Коши и Признак Даламбера и связь между ними. Знает связь между суммами и интегралами. Интегральный признак.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Последовательности вещественных чисел. Пределы и непрерывность функций
  • Дифференциальное и интегральное исчисление
  • Приложение интегрального исчисления и несобственные интегралы. Метрические и нормированные пространства.
  • Числовые и функциональные ряды. Функции нескольких переменных
Элементы контроля

Элементы контроля

  • неблокирующий Домашнее задание №1 (1 модуль)
  • неблокирующий Домашнее задание №2 (1 модуль)
  • блокирующий Письменный экзамен №1
  • неблокирующий Домашнее задание №3 (2 модуль)
  • неблокирующий Домашнее задание №4 (2 модуль)
  • неблокирующий Домашнее задание №5 (3 модуль)
  • неблокирующий Домашнее задание №6 (3 модуль)
  • неблокирующий Домашнее задание №7 (4 модуль)
  • неблокирующий Домашнее задание №8 (4 модуль)
  • блокирующий Письменный экзамен №2
    Экзамен проводится в письменной форме (теоретические вопросы и задачи по материалам курса). Экзамен проводится на платформе Zoom . К экзамену необходимо подключиться за 10 минут до начала. Компьютер студента должен удовлетворять требованиям: наличие рабочей камеры и микрофона, поддержка Zoom. Ответы на экзаменационные задания записываются на белых листах А4. После окончания экзамена студент должен сфотографировать/отсканировать свое решение и выслать на электронную почту преподавателя. Для участия в экзамене студент обязан: явиться на экзамен согласно расписанию, на всем протяжении экзамена держать включенными камеру и микрофон. Во время экзамена студентам запрещено: выключать камеру, пользоваться конспектами и подсказками, общаться с третьими лицами. Кратковременным нарушением связи во время экзамена считается нарушение связи менее 5 минут. Долговременным нарушением связи во время экзамена считается нарушение 5 минута и более. При долговременном нарушении связи студент может продолжить участие в экзамене по усмотрению преподавателя. Процедура пересдачи подразумевает использование усложненных заданий.
Промежуточная аттестация

Промежуточная аттестация

  • 2021/2022 учебный год 1 модуль
  • 2021/2022 учебный год 2 модуль
    0.125 * Домашнее задание №1 (1 модуль) + 0.125 * Домашнее задание №2 (1 модуль) + 0.125 * Домашнее задание №3 (2 модуль) + 0.5 * Домашнее задание №4 (2 модуль) + 0.125 * Письменный экзамен №1
Список литературы

Список литературы

Рекомендуемая дополнительная литература

  • Математический анализ. Теория и практика: Учебное пособие / Шипачев В.С., - 3-е изд. - М.:НИЦ ИНФРА-М, 2015. - 351 с.: 60x90 1/16. - (Высшее образование) (Переплёт 7БЦ) ISBN 978-5-16-010073-9 - Режим доступа: http://znanium.com/catalog/product/469727