• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Математический анализ I

2019/2020
Учебный год
RUS
Обучение ведется на русском языке
7
Кредиты
Статус:
Курс обязательный
Когда читается:
1-й курс, 1, 2 модуль

Преподаватели

Программа дисциплины

Аннотация

Целью освоения дисциплины «Математический анализ» является изучение разделов «Пределы функций», «Дифференциальное исчисление», «Интегральное исчисление», «Числовые и функциональные ряды» и «Дифференциальные уравнения и системы дифференциальных уравнений», позволяющие студенту ориентироваться в таких дисциплинах, как «Теория вероятностей и математическая статистика», «Методы оптимальных решений – I», «Методы оптимальных решений – II», «Микроэкономика», «Макроэкономика», «Теория игр», «Эконометрика». Курс "Математический анализ" будет использоваться в теории и приложениях дисциплин экономического цикла. Материалы курса могут быть использованы для разработки и применения численных методов решения задач из многих областей знания, для построения и исследования математических моделей в различных предметных областях, в первую очередь в экономике. Дисциплина является модельным прикладным аппаратом для изучения студентами-экономистами математической компоненты своего профессионального образования.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целью освоения дисциплины «Математический анализ I» является изучение начального курса математического анализа, который включает базовые разделы: «Основы теории множеств», «Пределы функций», «Дифференциальное исчисление. Курс «Математический анализ I» будет в дальнейшем использоваться в теории и приложениях дисциплин экономического цикла. Материалы курса могут быть использованы для разработки и применения численных методов решения задач из многих областей знания, для построения и исследования математических моделей в различных предметных областях, в первую очередь в экономике. Дисциплина является теоретическим и модельным прикладным аппаратом для изучения студентами-экономистами математической компоненты своего профессионального образования
Планируемые результаты обучения

Планируемые результаты обучения

  • демонстрирует знание базовых понятий теории множеств и операций над ними, основных функций и их свойств, умение строить, в том числе с помощью простейших преобразований, графики функций, работать с множествами, знание понятий обратная функция, композиция функций
  • демонстрирует знание понятий предела функции, непрерывности функции, умение вычислять пределы, исследовать функцию на непрерывность
  • демонстрирует умение дифференцировать функции, вычислять пределы функций с помощью производной, исследовать функции и строить их графики с помощью производных
  • демонстрирует знание геометрической интерпретации двумерных векторов, понятий расстояния и последовательности на плоскости
  • демонстрирует умение работать с функциями нескольких переменных – находить ООФ, линии и поверхности уровня
  • демонстрирует умение работать с функциями нескольких переменных –решать задачи на нахождение частых производных 1-го и 2-го порядков, экстремумов ФНП, вычислять производную по направлению и градиент функции
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Функция одной переменной. Введение. Элементы теории множеств и функций
    Введение в дисциплину Предмет математического анализа. Элементы математической логики: логические символы, утверждение, следствие, прямая и обратная теоремы, необходимые и достаточные условия. Элементы теории множеств Понятие множества и подмножества. Пустое множество. Множество всех подмножеств множества. Операции над множествами. Декартово произведение множеств. Соответствие, отношение, бинарное отношение. Взаимно однозначное соответствие. Эквивалентные множества, счетные и несчетные множества. Примеры. Метод математической индукции. Множество всех действительных чисел и множество всех точек числовой прямой, эквивалентность этих множеств. Свойства действительных чисел. Подмножества множества действительных чисел. Ограниченные (сверху, снизу) и неограниченные (сверху, снизу) множества. Наибольший (наименьший) элемент множества. Верхняя (нижняя) грань множества. Теорема о существовании верхней (нижней) грани. Понятие окрестности действительного числа (точки) и окрестности с выколотым центром. Понятие предельной точки точечного множества на числовой прямой. Внутренние и граничные точки. Множества плотные в себе, совершенные множества. Открытые и замкнутые множества. Отображения Понятие отображения (функции), его области определения и области значений. Элементарные функции. Обратное отображение. Композиция отображений. Инъективное, сюръективное и биективное отображения.
  • Предел и непрерывность функции одной переменной
    Примеры последовательностей. Предел числовой последовательности. Существование предела у ограниченной монотонной последовательности. Лемма о вложенных отрезках. Подпоследовательности. Теорема Больцано-Вейерштрасса о выделении сходящейся подпоследовательности. Лемма о существовании предельной точки у ограниченного бесконечного множества на числовой оси. Предел функции одной переменной. Односторонние и двусторонние пределы. Бесконечно малые (бесконечно большие) величины и их связь с пределами функций. Функции одной переменной, не имеющие предела в точке и на бесконечности. Свойства операции предельного перехода. Предельный переход в сложной функции. Первый и второй замечательные пределы. Символы о-малое и О-большое и их использование для раскрытия неопределенностей. Непрерывность функции в точке и на множестве. Односторонняя непрерывность. Точки разрыва и их классификация. Арифметические операции над непрерывными функциями. Непрерывность основных элементарных функций. Непрерывность сложной функции. Верхняя (нижняя) грань, глобальный максимум (минимум) функции в ее области определения.
  • Дифференцируемые функции одной переменной
    Понятие производной функции одной переменной. Геометрическая и экономическая интерпретации производной. Уравнение касательной. Понятие дифференцируемой функции. Необходимое и достаточное условие дифференцируемости. Связь непрерывности и дифференцируемости функции одной переменной. Производная суммы, произведения, частного, сложной и обратной функции. Дифференцирование функций, заданных параметрически. Производные основных элементарных функций. Производные высших порядков. Понятие об экстремумах функции одной переменной. Локальный экстремум (внутренний и граничный) функции одной переменной. Основные теоремы дифференциального исчисления. Необходимое условие внутреннего локального экстремума (теорема Ферма). Теоремы о среднем значении (теоремы Ролля, Лагранжа и Коши) и их геометрическая интерпретация. Правило Лопиталя. Формулы Тейлора и Маклорена. Монотонность и экстремумы. Достаточное условие строгого возрастания (убывания) функции на интервале. Достаточные условия локального экстремума функции одной переменной. Выпуклые (вогнутые) функции одной переменной. Необходимое и достаточное условие выпуклости (вогнутости). Точка перегиба. Необходимое и достаточное условия точки перегиба. Вертикальные и невертикальные асимптоты графика функции одной переменной. Исследование функции одной переменной с использованием первой и второй производных и построение ее графика.
  • Множества точек и последовательности в n-мерном пространстве
    Множество всех двумерных векторов. Геометрическая интерпретация двумерных векторов. n-мерные вектора. Операции сложения n-мерных векторов и их умножения на действительные числа. Свойства этих операций. Скалярное произведение. Понятие n-мерного евклидова пространства. Норма n-мерного вектора и ее свойства. Понятие окрестности точки, окрестности с выколотым центром. Понятие предельной, внутренней и граничной точек точечного множества на плоскости и в n-мерном пространстве. Открытые и замкнутые множества на плоскости и в n-мерном пространстве. Понятие линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Выпуклые и невыпуклые множества на плоскости и в п-мерном пространстве. Понятие расстояния. Неравенство Коши-Буняковского, неравенство треугольника. Множества связные, несвязные, ограниченные, неограниченные. Замкнутость. Компактные множества. Понятие области. Отделимые множества. Понятие направления в точке. Последовательность точек на плоскости и в n-мерном пространстве. Понятие ограниченной и неограниченной последовательности точек. Взаимосвязь с покоординатной сходимостью. Теорема Больцано-Вейерштрасса. Лемма о предельной точке.
  • Функции нескольких переменных
    Функции двух переменных. Понятие о множестве (линии) уровня функции двух переменных. Карта множеств уровня функции двух переменных, взаимное расположение линии уровня функции двух переменных. Обобщение на случай функций более двух переменных.
  • Дифференцируемые функции нескольких переменных
    Частные производные и частные дифференциалы. Градиент ФНП. Дифференцируемость ФНП. Главная линейная часть приращения ФНП. Полный дифференциал ФНП. Геометрическая интерпретация частных производных. Касательная плоскость к графику ФНП. Дифференцируемость сложных ФНП. Производная по направлению. Ортогональность градиента и множества уровня ФНП в точке ее дифференцируемости. Частные производные порядка выше первого. Теорема о равенстве смешанных частных производных. Экстремумы ФНП. Необходимое условие локального абсолютного экстремума. Знакоопределенность квадратичной формы. Достаточное условие локального абсолютного экстремума. Выпуклые и строго выпуклые функции. Экстремум выпуклой функции.
Элементы контроля

Элементы контроля

  • неблокирующий Контрольная работа 1
  • неблокирующий Контрольная работа 2
  • неблокирующий Контрольная работа 3
  • неблокирующий Контрольная работа 4
  • неблокирующий Экзамен
  • неблокирующий Самостоятельная работа
Промежуточная аттестация

Промежуточная аттестация

  • Промежуточная аттестация (2 модуль)
    0.116 * Контрольная работа 1 + 0.145 * Контрольная работа 2 + 0.116 * Контрольная работа 3 + 0.145 * Контрольная работа 4 + 0.058 * Самостоятельная работа + 0.42 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Ильин В.А., Садовничий В.А., Сендов Б.Х.-МАТЕМАТИЧЕСКИЙ АНАЛИЗ Ч. 1 4-е изд., пер. и доп. Учебник для бакалавров-М.:Издательство Юрайт,2016-660-Бакалавр. Академический курс-978-5-9916-2733-7: -Текст электронный // ЭБС Юрайт - https://biblio-online.ru/book/matematicheskiy-analiz-ch-1-389342
  • Кудрявцев Л.Д.-КУРС МАТЕМАТИЧЕСКОГО АНАЛИЗА В 3 Т. ТОМ 2 В 2 КНИГАХ 6-е изд., пер. и доп. Учебник для бакалавров-М.:Издательство Юрайт,2016-720-Бакалавр. Академический курс-978-5-9916-6126-3, 978-5-9916-2293-6, 978-5-9916-6127-0, 978-5-9916-6128-7: -Текст электронный // ЭБС Юрайт - https://biblio-online.ru/book/kurs-matematicheskogo-analiza-v-3-t-tom-2-v-2-knigah-387530

Рекомендуемая дополнительная литература

  • Путко Б.А., Тришин И.М., Кремер Н.Ш. - под ред.-МАТЕМАТИЧЕСКИЙ АНАЛИЗ В 2 Т. Учебник и практикум для академического бакалавриата-М.:Издательство Юрайт,2016-634-Бакалавр. Академический курс-978-5-9916-6238-3, 978-5-9916-6298-7, 978-5-9916-6300-7: -Текст электронный // ЭБС Юрайт - https://biblio-online.ru/book/matematicheskiy-analiz-v-2-t-388079
  • Шипачев В.С.-ВЫСШАЯ МАТЕМАТИКА. ПОЛНЫЙ КУРС 4-е изд., испр. и доп. Учебник для академического бакалавриата-М.:Издательство Юрайт,2016-607-Бакалавр. Академический курс-978-5-9916-4358-0: -Текст электронный // ЭБС Юрайт - https://biblio-online.ru/book/vysshaya-matematika-polnyy-kurs-388659