We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Modern Methods of Decision Making

2024/2025
Academic Year
RUS
Instruction in Russian
3
ECTS credits
Delivered at:
Department of Informatics
Course type:
Compulsory course
When:
1 year, 4 module

Instructor

Программа дисциплины

Аннотация

Дисциплина направлена на формирование теоретических знаний о математических методах поиска и анализа данных для принятия и реализации решений, включая методы оптимизации, ранжирования, выбора, вероятностного моделирования и обучения с подкреплением. В результате изучения дисциплины у студента будет сформировано представление о математических подходах к разработке и исследованию методов анализа и принятия решений. Для освоения дисциплины необходимы знания языка программирования Python и основ машинного обучения.
Цель освоения дисциплины

Цель освоения дисциплины

  • формирование теоретических знаний о математических методах поиска и анализа данных для принятия и реализации решений, включая методы оптимизации, ранжирования, выбора, вероятностного моделирования и обучения с подкреплением
Планируемые результаты обучения

Планируемые результаты обучения

  • знает основные понятия теории принятия решения
  • использует методы поддержки принятия решений для оценки шансов и выбора оптимальных стратегий
  • оценивает качество моделей принятия решений
  • строит вероятностные графические модели для поддержки принятия решений
  • строит модели ранжирования
  • формулирует рекомендации в предметной области по результатам моделирования
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Введение, основные понятия теории принятия решений
  • Выбор и ранжирование
  • Вероятностные графические модели
  • Обучение с подкреплением
Элементы контроля

Элементы контроля

  • неблокирующий Упражнения
    Упражнения из асинхронных материалов и во время синхронных практических занятий
  • неблокирующий Проект
    Проектирование системы с функциональностью для автоматизированного принятия решений с использованием методов, изученных в курсе. Проект может выполняться индивидуально или в группах до трех человек, объединенных общей идеей, но с индивидуальной реализацией методов
  • неблокирующий Домашнее задание: ранжирование
    На предоставленных преподавателем данных построить модель ранжирования любым алгоритмом, описать выбранный алгоритм и оценить качество ранжирования. Написать отчет о модели, включающий краткое описание алгоритма; построенную модель; оценку качества модели (NDCG/MAP/...); пример ранжирования для примера из тестовой выборки.
  • неблокирующий Экзамен
    Работа представляет собой тест с закрытыми и открытыми вопросами (теоретическими и практическими). Тест может содержать от 15 до 25 вопросов, покрывающих рассмотренные на занятиях темы.
  • неблокирующий Домашнее задание: байесовские сети
    Структурированное эссе по возможностям применения вероятностных графических моделей с частичным повторением результатов с помощью симуляции. Необходимо найти любую статью про применение байесовских сетей (не про разработку алгоритмов, а именно про применение в какой-то задаче) и написать короткий отчет с указанием выбранной статьи, описанием задачи, которую решали авторы, и того, каким образом в этой статье построена структура. После этого необходимо повторить (полностью или частично) сеть из статьи и привести примеры вывода по ней
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 4th module
    0.2 * Домашнее задание: байесовские сети + 0.1 * Домашнее задание: ранжирование + 0.3 * Проект + 0.2 * Упражнения + 0.2 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Corrigan, R. (2008). Back to the future: digital decision making. Information & Communications Technology Law, 17(3), 199–220. https://doi.org/10.1080/13600830802473006
  • Murphy, K. P. (2012). Machine Learning : A Probabilistic Perspective. Cambridge, Mass: The MIT Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=480968

Рекомендуемая дополнительная литература

  • Højsgaard, S., Lauritzen, S. L., & Edwards, D. (2012). Graphical Models with R. New York: Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=534901
  • Wiering, M., & Otterlo, M. van. (2012). Reinforcement Learning : State-of-the-Art. Berlin: Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=537744

Авторы

  • Суворова Алёна Владимировна