We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Computational Methods in Bioinformatics

2021/2022
Academic Year
RUS
Instruction in Russian
8
ECTS credits
Delivered at:
Department of Informatics
Course type:
Compulsory course
When:
1 year, 1-4 module

Instructors


Андронов Иван Викторович


Svidchenko, Oleg

Программа дисциплины

Аннотация

Основная цель курса - напомнить основные факты и базовые понятия вычислительных методов, активно используемых в современных алгоритмах биоинформатики, а также напомнить слушателям основные приближенные методы решения задач интерполяции, аппроксимации, приближённого решения алгебраических и дифференциальных уравнений, возникающих при работе с данными, сформировать у слушателей практические навыки работы с численными данными, методы оптимизации и имитационного моделирования.
Цель освоения дисциплины

Цель освоения дисциплины

  • формирование у студентов теоретических знаний и практических навыков по основам применения численных методов для решения различных задач
  • ознакомление студентов с приближенными методами для решения задач интерполяции, аппроксимации, приближённого решения уравнений, возникающих при работе с данными
  • формирование у студентов практических навыков работы с данными и приближенного решения частых практических задач в области машинного обучения, оптимизации и имитационного моделирования.
Планируемые результаты обучения

Планируемые результаты обучения

  • Владеет понятием интерполяционного полинома, в том числе, в форме Лагранжа и в форме Ньютона; оценки погрешности интерполяционного полинома. Знает метод наименьших квадратов приближения табличных функций. Владеет понятием о сплайнах. Знает: интерполяционные сплайны первого порядка; естественный интерполяционный кубический сплайн, его минимальные свойств.
  • Владеет понятием о численном решении ОДУ. Владеет понятием о сходимости и устойчивости методов численного решения ОДУ. Знает: характеристику методов Рунге-Кутты; оценку погрешности. Знает методы контроля локальной вычислительной погрешности при решении ОДУ
  • Знает общую характеристику итерационных методов решения СЛАУ; метод простой итерации решения СЛАУ; теорему о сходимости. Владеет понятием модификации метода итерации. Знает теоремы о сходимости, применение в частных случаях. Знает методы решения СЛАУ.
  • Постановка задачи о решении СЛАУ. Владеет понятием числа обусловленности матриц. Решает простейшие СЛАУ. Знает теорему о LDR-разложении матрицы, использует разложения и его модификации для решения СЛАУ. Знает: QR-разложение матрицы и его использование для решения СЛАУ; матрицы отражения и их свойства; QR-разложение с помощью ортогональных матриц для решения СЛАУ
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Прямые методы решения систем линейных уравнений (СЛАУ)
  • Итерационные методы решения СЛАУ
  • Численные методы аппроксимации табличных функций
  • Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений
Элементы контроля

Элементы контроля

  • неблокирующий Домашнее задание №1
  • неблокирующий Домашние задания №2
  • неблокирующий Домашнее задание №3
  • неблокирующий Домашнее задание №4
  • блокирующий экзамен
  • блокирующий экзамен
Промежуточная аттестация

Промежуточная аттестация

  • 2021/2022 учебный год 1 модуль
    0.3 * Домашнее задание №1 + 0.7 * экзамен
  • 2021/2022 учебный год 2 модуль
    0.25 * 2021/2022 учебный год 1 модуль + 0.25 * Домашние задания №2 + 0.5 * экзамен
  • 2021/2022 учебный год 4 модуль
    0.5 * экзамен + 0.25 * Домашнее задание №4
Список литературы

Список литературы

Рекомендуемая основная литература

  • Под ред. Пирумова У.Г. - ЧИСЛЕННЫЕ МЕТОДЫ 5-е изд., пер. и доп. Учебник и практикум для академического бакалавриата - М.:Издательство Юрайт - 2019 - 421с. - ISBN: 978-5-534-03141-6 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/chislennye-metody-431961

Рекомендуемая дополнительная литература

  • Сухарев А. Г., Тимохов А. В., Федоров В. В. - ЧИСЛЕННЫЕ МЕТОДЫ ОПТИМИЗАЦИИ 3-е изд., испр. и доп. Учебник и практикум для академического бакалавриата - М.:Издательство Юрайт - 2019 - 367с. - ISBN: 978-5-534-04449-2 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/chislennye-metody-optimizacii-427001

Авторы

  • Омельченко Александр Владимирович