We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Big Data Software Engineering

2024/2025
Academic Year
RUS
Instruction in Russian
3
ECTS credits
Delivered at:
Department of Informatics
Course type:
Elective course
When:
2 year, 3 module

Instructor

Программа дисциплины

Аннотация

Дисциплина направлена на формирование у студентов теоретических знаний и практических навыков работы с большими данными. Курс посвящен программному решению проблемы надежного масштабируемого хранения и обработки данных и знакомит с особенностями работы с большими данными. Студенты познакомятся с различными моделями представления и обработки данных, а также освоят работу с контейнерами. Для освоения дисциплины студентам необходимо иметь знания, полученные в результате изучения дисциплин «Современные методы анализа данных», «Алгоритмы и структуры данных».
Цель освоения дисциплины

Цель освоения дисциплины

  • Формирование у студентов теоретических знаний и практических навыков использования методом машинного обучения и естественной обработки текстов в области работы с кодом и разработки программного обеспечения.
Планируемые результаты обучения

Планируемые результаты обучения

  • Умеет выбрать подходящий метод машинного обучения и естественной обработки текстов для создания модели или прототипа инструмента, помогающего в решении задач, возникающих при разработке программного обеспечения.
  • Умеет реализовать сбор и предобработку данных на основе репозитория с исходным кодом.
  • Имеет навыки использования существующих популярных библиотек, реализующих алгоритмы машинного обучения, для решения задач, актуальных в проектах по разработке программного обеспечения.
  • Понимает основные виды деятельности, осуществляемые при разработке программного обеспечения, и то, как в них могли бы быть использованы методы машинного обучения.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Раздел 1. Постановка задачи машинного обучения в области программной инженерии
  • Раздел 2. Использования машинного обучения для предсказания и оценки
  • Раздел 3. Использование машинного обучения для задач синтеза кода
  • Раздел 4. Использование машинного обучения для оптимизации архитектуры кода
  • Раздел 5. Использование машинного обучения для поиска дубликатов
  • Раздел 6. Использование техник обработки естественных языков
  • Раздел 7. Использование машинного обучения для анализа кода
Элементы контроля

Элементы контроля

  • неблокирующий Домашнее задание №1
    Домашнее задание №1 выдается студентам в одном варианте. Срок выполнения домашнего задания – 3 недели. Форма представления обучающимися домашнего задания – программа на одном из распространённых языков программирования.
  • неблокирующий Домашнее задание №2
    Домашнее задание №2 выдается студентам в одном варианте. Срок выполнения домашнего задания – 2 недели. Форма представления обучающимися домашнего задания – программа на одном из распространённых языков программирования.
  • неблокирующий Домашнее задание №3
    Домашнее задание №3 выдается студентам в одном варианте. Срок выполнения домашнего задания – 3 недели. Форма представления обучающимися домашнего задания – программа на одном из распространённых языков программирования.
  • блокирующий Устный экзамен
    Устный экзамен проводится в форме ответов на вопросы экзаменационного билета и дополнительные вопросы по материалам курса. Экзаменационный билет содержит два вопроса. На подготовку ответа выделяется 40 минут.
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 3rd module
    Преподаватель учитывает оценку за текущий контроль (домашние задания). Онакопленная = (Од/з1 + Од/з2 + Од/з3) / 3 Результирующая оценка за дисциплину рассчитывается следующим образом: ОРезультирующая= 0,5Онакопленная + 0,5Оэкзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Zimmermann, T., Menzies, T., & Bird, C. (2015). The Art and Science of Analyzing Software Data. Amsterdam: Morgan Kaufmann. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=593414

Рекомендуемая дополнительная литература

  • Kelleher, J. D. (2019). Deep Learning. Cambridge: The MIT Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=2234376

Авторы

  • Москвин Денис Николаевич