We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Linear Algebra

2021/2022
Academic Year
RUS
Instruction in Russian
3
ECTS credits
Delivered at:
Department of Informatics
Course type:
Compulsory course
When:
2 year, 1, 2 module

Instructors


Горячко Евгений Евгеньевич


Khodunov, Pavel

Программа дисциплины

Аннотация

Целями освоения дисциплины «Линейная алгебра и геометрия» являются формирование у студентов теоретических знаний и практических навыков по основам линейной алгебры, в частности уметь решать системы линейных уравнений, владеть понятиями матрицы, векторного пространства, базиса, линейного отображения, спектра линейного оператора, квадратичной формы, тензора, понимать их взаимосвязь, а так же уметь решать с помощью этих понятий задачи нахождения расстояния между аффинными подпространствами, минимума квадратичной формы на сфере, применять понятие спектра графа для получения различных свойств графов. В результате освоения дисциплины студент должен: − Знать основные понятия и факты линейной алгебры, такие как матрица, векторное пространство, линейная независимость, базис, размерность, ранг, спектр линейного оператора. − Уметь находить базис подпространства заданного набором векторов или системой линейных условий, ранг линейного отображения, спектр и жорданову форму линейного оператора, сигнатуру вещественной квадратичной формы, ортогонализацию базиса евклидового пространства, спектр графа. − Иметь навыки (приобрести опыт) обращения с основными конструкциями и объектами линейной алгебры.
Цель освоения дисциплины

Цель освоения дисциплины

  • формирование у студентов теоретических знаний и практических навыков по основам линейной алгебры, в частности уметь решать системы линейных уравнений, владеть понятиями матрицы, векторного пространства, базиса, линейного отображения, спектра линейного оператора, квадратичной формы, тензора, понимать их взаимосвязь, а так же уметь решать с помощью этих понятий задачи нахождения расстояния между аффинными подпространствами, минимума квадратичной формы на сфере, применять понятие спектра графа для получения различных свойств графов.
Планируемые результаты обучения

Планируемые результаты обучения

  • Владеет понятиями: линейные операторы; определитель и след оператора; многочлен от оператора; собственные числа; критерий диагонализуемости; оператор на факторпространстве; теорема Гамильтона-Кэли; диаграммы Юнга.
  • Владеет понятиями: максимум квадратичной формы на сфере, принцип Куранта-Фишера, чередование собственных чисел при ограничении на подпространство, метод главных компонент, SVD-разложение Знает: спектр графа, характеризация двудольности, сильно регулярные графы, спектр произведения графов, спектр графа и размер максимального независимого множества
  • Знает билинейные формы, ранг, приведение квадратичной формы к диагональному виду, критерий Сильвестра, дискриминант формы, евклидовы и унитарные пространства, ортогонализация, расстояние и ортогональная проекция. Владеет понятиями: канонические изоморфизмы, тензорное произведение линейных отображений, кронекерово произведение матриц, симметричные тензоры, кососимметричные тензоры, алгебра Грассмана, теорема Бине-Коши
  • Знает метод Гаусса в решении систем линейных уравнений, Владеет понятиями: векторные пространства, линейная зависимость, базис, теорема о равномощности базисов, линейное отображение, теорема о размерностях ядра и образа, ранг, прямая сумма, алгебра матриц, присоединѐнная матрица
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Основы линейной алгебры
  • Линейные операторы
  • Полилинейная алгебра
  • Спектр оператора в задачах максимизации и в теории графов
Элементы контроля

Элементы контроля

  • неблокирующий Домашнее задание No1
  • неблокирующий Домашнее задание No2
  • неблокирующий Домашнее задание No3
  • неблокирующий Домашнее задание No4
  • неблокирующий Устный экзамен No1
    Экзамен проводится в устной форме офлайн.
  • неблокирующий Устный экзамен No2
    Экзамен проводится в устной форме офлайн.
  • неблокирующий Домашнее задание No1
  • неблокирующий Домашнее задание No2
  • неблокирующий Домашнее задание No3
  • неблокирующий Домашнее задание No4
  • неблокирующий Устный экзамен No1
  • неблокирующий Устный экзамен No2
    Экзамен проводится на платформе Zoom. Экзамен проводится в устной форме (опрос по материалам курса). По просьбе преподавателя студент должен быть готов выполнить некоторые задания в письменном виде, после чего сфотографировать и выслать на почту преподавателю. К экзамену необходимо подключиться согласно расписанию, высланному преподавателем на корпоративные почты студентов накануне экзамена. Компьютер студента должен удовлетворять требованиям: наличие рабочей камеры и микрофона, поддержка платформы Zoom. Для участия в экзамене студент обязан: выбрать себе имя в Zoom совпадающее с его именем и фамилией, явиться на экзамен согласно точному расписанию, при ответе включить камеру и микрофон. Во время экзамена студентам запрещается выключать камеру. Ипользование конспектов или других справочных материалов допускается только с разрешения преподавателя. Кратковременным нарушением связи во время экзамена считается нарушение связи менее 5 минут. Долговременным нарушением связи во время экзамена считается нарушение 5 минут и более. При долговременном нарушении связи возможность продолжения студентом участие в экзамене определяется преподавателем. Процедура пересдачи подразумевает использование усложненных заданий
Промежуточная аттестация

Промежуточная аттестация

  • 2020/2021 учебный год 3 модуль
    0.25 * Домашнее задание No1 + 0.25 * Домашнее задание No2 + 0.5 * Устный экзамен No1
  • 2020/2021 учебный год 4 модуль
    0.25 * Домашнее задание No3 + 0.5 * Устный экзамен No2 + 0.25 * Домашнее задание No4
  • 2021/2022 учебный год 1 модуль
    0.25 * Домашнее задание No1 + 0.25 * Домашнее задание No2 + 0.5 * Устный экзамен No1
  • 2021/2022 учебный год 2 модуль
    0.5 * Устный экзамен No2 + 0.25 * Домашнее задание No3 + 0.25 * Домашнее задание No4
Список литературы

Список литературы

Рекомендуемая основная литература

  • Бурмистрова Е. Б., Лобанов С. Г. - ЛИНЕЙНАЯ АЛГЕБРА. Учебник и практикум для СПО - М.:Издательство Юрайт - 2019 - 421с. - ISBN: 978-5-9916-9122-2 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/lineynaya-algebra-427070

Рекомендуемая дополнительная литература

  • Под ред. Кремера Н.Ш. - ЛИНЕЙНАЯ АЛГЕБРА 3-е изд., испр. и доп. Учебник и практикум для бакалавриата и специалитета - М.:Издательство Юрайт - 2019 - 422с. - ISBN: 978-5-534-08547-1 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/lineynaya-algebra-432050

Авторы

  • Шендерович Игорь Евгеньевич