

XXVI Международный симпозиум «Нанофизика и наноэлектроника» Ниэкний Новгород, Mapm 13–16, 2023

Эксперимент

- Подложка GaAs(001)
- Температура роста КТ: 500°С
- Скорость роста КТ: 0,05 МС/с
- Температура заращивания: 500°С
- Скорость заращивания: 0,25 МС/с
- Толщина LT-GaAs: 5 и 10 нм
- Давление As при заращивании:
 - 1·10⁻⁵ и 3·10⁻⁵ Па

Влияние давления мышьяка при заращивании квантовых точек InAs тонким низкотемпературным

С. В. Балакирев¹, Н. Е. Черненко¹, Н. В. Крыжановская², Н. А. Шандыба¹, Д. В. Кириченко¹, А. С. Драгунова², С. Д. Комаров², А. Е. Жуков², М. С. Солодовник¹ ¹ Лаборатория эпитаксиальных технологий, Институт нанотехнологий, электроники и приборостроения, Южный федеральный университет, г. Таганрог ² Международная лаборатория квантовой оптоэлектроники, НИУ «Высшая школа экономики», г. Санкт-Петербург

E-mail: sbalakirev@sfedu.ru solodovnikms@sfedu.ru

Аннотация

В работе представлены результаты экспериментальных исследований заращивания квантовых точек (КТ) InAs низкотемпературным слоем GaAs (LT-GaAs) при различных давлениях паров мышьяка. На спектрах фотолюминесценции (ФЛ) КТ, зарощенных при высоком давлении As, наблюдается одиночная линия (~1050 нм), соответствующая одномодальному распределению КТ по размерам. В то же время, для случая с низким давлением As наблюдается два более длинноволновых пика (~1080 и 1150 нм). На основе анализа мощностных зависимостей спектров фотолюминесценции установлено, что длинноволновые вклады фотолюминесценции квантовых точек, зарощенных при низком давлении мышьяка, соответствуют излучению основных состояний двух групп квантовых точек с различным средним размером, сформированных в процессе массопереноса в системе «квантовая точка – смачивающий слой – матрица».

Рисунок 1. РЭМ-изображение (a) и распределение по размерам (b)

Трі (K)	P _{As} (Pa)	<i>H</i> = 5 nm			<i>H</i> = 10 nm		
		SW line (nm)	LW line (nm)	Integrated intensity (a.u.)	SW line (nm)	LW line (nm)	Integrated Intensity (a.u.)
300	3.10-5	1049	-	0.03	1038	-	0.16
	1.10^{-5}	1083	~1150	0.61	1077	1140	0.76
77	3.10-5	983	-	0.88	983	-	0.64
	1.10-5	1009	~1080	1.00	1011	1070	0.62

Таблица 1. Параметры спектров ФЛ структур с КТ, зарощенных

слоем LT-GaAs различной толщины при различных давлениях As.

Рисунок 2. Спектры ФЛ КТ, зарощенных слоем LT-GaAs при различных условиях: красные линии $-P_{As} = 3 \cdot 10^{-5}$ Па, синие линии – $P_{As} = 1 \cdot 10^{-5}$ Ра; сплошные линии – 10 нм, пунктирные линии – 5 нм.

Рисунок 3. Спектры ФЛ КТ, зарощенных при низком P_{As} , при различной мощности оптической накачки: (a) H = 5 нм (300 K); (b) H = 10 нм (300 K); (c) H = 5 нм (77 K); (d) H = 10 нм (77 K). Рисунок 4. Спектры ФЛ КТ, зарощенных при низком *P*_{As}, (а) и зависимости интенсивности аппроксимирующих гауссовых функций при 77 К (синяя линия) и 300 К (остальные линии).

Благодарности

Исследование выполнено при финансовой поддержке проекта № FENW-2022-0034 Министерства науки и высшего образования РФ и проекта "Зеркальные лаборатории" НИУ ВШЭ. Оптические измерения выполнялись на УНУ «Комплексный оптоэлектронный стенд».