
Сжатие без потерь с помощью нейронных сетей

Чернышев Кирилл Владиславович

Научный руководитель: к.ф.-м.н. Кураленок И.Е.

Научный консультант: Шпильман А. А.

Сжатие без потерь

Сжатие без потерь

Генеративные модели для сжатия изображений:

- normalizing flows^[1]
- VAF^[2]

Сжатие текстов:

- CMIX
- NNCP^[3]

- [1] E.Hoogeboom et al. -- 2019 Integer Discrete Flows and Lossless Compresssion
- [2] J.Townsend et al. -- 2019 Practical Lossless Compression With Latent Variables Using Bits Back Coding
- [3] F.Bellard -- 2021 NNCP: Lossless Data Compression with Neural Networks

Цели

Цель работы - использовать нейронные сети для моделирования, выделить особенности такого подхода

Задачи:

- Реализовать алгоритм сжатия
- Произвести сравнение с архиваторами 7zip и zip
- Определить свойства алгоритма

Алгоритм

- Моделирование условного распределения $p(c|c_{-1}, c_{-2}, ..., c_{-n})$ с помощью:
 - MLP
- LSTM
- Кодирование -- алгоритм Хаффмана
- Кодирование -- алгоритм даффиана Функция потерь -- усредненная кросс-энтропия $\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} (y_i \cdot \log \hat{y_i})$

Сравнение с 7zip

	bib	book1	geo	obj1	gaussian
original	111,3	768,8	102,4	21,5	200
zip	35,4	313,7	68,6	10,5	197,4
7zip	30,7	261,1	53,4	9,5	144,2
MLP	53,3	421,4	49,9	9,7	143,2
LSTM	44,4	286,5	48	5,4	134,4

Взвешенная кросс-энтропия

веса	LSTM	MLP	
обратные частоты	51,9 57,9		
относительные частоты	45,9	50,4	
отсутствуют	40	45,8	

Уменьшение размера выборки

	MLP	LSTM
Размер обучающей выборки	10,2	2
Число эпох	5	15
Число скрытых нейронов	128	64
Размер сжатого файла	4,68	4,24

Выводы

• Реализован алгоритм сжатия, использующий нейронные сети для моделирование распределений символов.

• Обнаружены данные, эффективно сжимаемые представленным алгоритмом.

 Несмотря на аналогии между классификацией и данной задачей, позволяющие сократить число данных обучающей выборки, было показано, что изменение кросс-энтропии на иную функции потерь приводит к серьезной потере качества.