
The Government of the Russian Federation

Federal State Autonomous Institution for Higher Professional Education

National Research University Higher School of Economics

St. Petersburg Branch

St. Petersburg School of Physics, Mathematics and Computer Science

Andrei Tonkikh

BYZANTINE FAULT-TOLERANT DISTRIBUTED COMPUTING: RECONFIGURATION AND

CONSENSUS

Master dissertation

Area of studies 01.04.02 «Applied Mathematics and Informatics»

Master Program “Software Development and Data Analysis”

Reviewer

PhD, Senior Researcher,

VMware Research

Ittai Abraham

Research Supervisor

PhD, Associate Professor,

Department of Informatics

Denis Moskvin

Consultant

PhD, Professor,

Télécom Paris,

Institut Polytechnique de Paris

Petr Kuznetsov

Research Supervisor

Professor of Applied Mathematics

and Informatics department

Ildar Belyalov

Saint Petersburg – 2021

Contents

Introduction 5

1. Asynchronous Reconfiguration 10
1.1. Model assumptions . 10

1.1.1. Processes and channels 10
1.1.2. Configuration lattice 11
1.1.3. Forward­secure digital signatures 12

1.2. Reconfiguration examples and challenges 13
1.2.1. Reconfiguration example 13
1.2.2. The “I still work here” attack 15
1.2.3. The “slow reader” attack 18

1.3. Abstractions and definitions 18
1.3.1. Access control and object composition 18
1.3.2. Definition of Byzantine lattice agreement 19
1.3.3. Definition of reconfigurable objects 20
1.3.4. Definition of dynamic objects 21
1.3.5. Quorum system assumptions 23
1.3.6. Broadcast primitives 23

1.4. Dynamic Byzantine Lattice Agreement 24
1.4.1. Client implementation 26
1.4.2. Replica implementation 29
1.4.3. Implementing other dynamic objects 31

1.5. Reconfigurable objects . 32
1.5.1. Implementation . 32
1.5.2. Proof of correctness 34
1.5.3. Discussion . 35

1.6. Access control . 37
1.6.1. Sanity­check approach 38
1.6.2. Quorum­based approach (“on­chain governance”) . . . 39
1.6.3. Trusted administrators 40
1.6.4. Combining Access Control with other objects 40

2

1.7. Related work . 41
1.8. Discussions . 43

2. Efficient Byzantine Fault­Tolerant Consensus 46
2.1. Preliminaries . 46

2.1.1. Model assumptions . 46
2.1.2. The consensus problem 47

2.2. Algorithm . 48
2.2.1. Normal case . 49
2.2.2. View change . 50
2.2.3. Proof of consistency 52
2.2.4. Generalized version 55

2.3. Lower bound . 56
2.3.1. Preliminaries . 56
2.3.2. Optimality of the proposed algorithm 60
2.3.3. Optimality of FaB Paxos 66

2.4. Related work . 67

Conclusion 69

References 70

A. Reconfiguration Appendix 78
A.1. Pseudocode for the DBLA implementation 78
A.2. Correctness proof of the DBLA implementation 83

A.2.1. Safety . 83
A.2.2. Liveness . 89

A.3. Possible optimizations for the DBLA implementation 93
A.4. Max Register . 94

A.4.1. Dynamic Max­Register implementation 94
A.4.2. Proof of correctness 98

3

Abstract

Byzantine fault­tolerance is a criticalmechanism allowing software engineers
to build distributed systems resilient to numerous kinds of hardware failures,
software bugs, and security breaches. Depending on the environment, different
models are used to design distributed protocols. Notably, there is a huge gap be­
tween the so­called asynchronous and partially­synchronous models. The latter
allows for deterministic solutions of the famous consensus problem whereas the
former does not. In this thesis, one important problem for each of the two mod­
els is addressed, the ultimate goal being to make both types of algorithms more
applicable in practice.

In the asynchronous model, the problem of reconfiguration is considered.
Most known Byzantine fault­tolerant algorithms are designed with the assump­
tion that the set of processes executing the protocol is fixed and known a priori.
While being very convenient for algorithm designers, this assumption is not very
realistic. In practice, servers often need to be replaced, repaired, or added for
greater fault tolerance. In this thesis, the first asynchronous reconfiguration pro­
tocol tolerating Byzantine failures is presented.

In the partially­synchronous model, on the other hand, reconfiguration can
be performed much easier thanks to the possibility to solve consensus. However,
Byzantine fault­tolerant consensus algorithms have a reputation of being much
slower than their crash fault­tolerant counterparts. To close this gap, the class
of fast Byzantine consensus algorithms has emerged. These algorithms aim at
solving the Byzantine consensus with the same latency as crash fault­tolerant
solutions. However, this improved latency comes at the cost of decreased fault
tolerance.

In this thesis, a new fast Byzantine consensus algorithm that has better re­
silience than any of the previously existing ones is presented. Moreover, the
algorithm comes with proof that its resilience is optimal. The surprising dis­
covery is that, in the special yet very important in practice case when only one
Byzantine failure is tolerated, the algorithm presented in this thesis requires only
4 processes, which remains optimal even if we allow for suboptimal latency. All
previously known fast Byzantine consensus algorithms required at least 6 pro­
cesses in this case.

4

Introduction

A long­lasting vision in distributed computing is to build reliable systems out
of unreliable components. Hence, the notion of fault tolerance was invented.
The premise is that faults are uncorrelated and it is very unlikely that more than
a certain number of processes will fail at the same time.1 This number is usu­
ally denoted by f and is called the resilience threshold. The total number of
processes is usually denoted by n. The minimum value of n that is required to
tolerate f failures characterizes the resilience of the protocol (typical values are
n = 2f + 1 and n = 3f + 1).

However, there are many kinds of possible errors that may occur. Starting
from aminor slowdown due to garbage collection all the way to a security breach
that allows a hacker to fully control one or multiple processes. The simplest and
most common assumption is that a faulty process simply stops taking any actions
and does not send messages not prescribed by the protocol. Algorithms that are
designed with this assumption in mind are called crash fault­tolerant. It works
well for simple and easily detectable malfunctions such as hard drive or network
failures.

However, in practice, much more sophisticated problems occur sometimes.
In order to incorporate these kinds of problems, the notion of Byzantine fault
tolerance was invented [65]. A Byzantine fault­tolerant algorithm assumes that
up to f processes are completely controlled by a malicious adversary that is
trying to break the system (i.e., to force it to violate one of its safety or liveness
properties [11]). The processes under the control of the adversary (called faulty
or Byzantine) are allowed to violate the protocol in arbitrary ways, including
coordinated attacks. However, they also may choose to act as correct processes
in order to conceal themselves. It is, therefore, impossible to reliably determine
whether a specific process is Byzantine unless this process violates the protocol
in a detectable way. The non­Byzantine processes are called correct and are
assumed to follow the prescribed protocol at all times.

In the recent years, under the name of Blockchain, Byzantine fault­tolerance
has been widely deployed as a mechanism for building peer­to­peer systems

1To avoid correlated faults, multiversion programming is sometimes used [26, 25, 2].

5

connecting thousands of people without requiring the users to trust each other
or any third party.

Apart from the processes themselves, a distributed system is also defined by
the network that interconnects them. The type of network used in a distributed
system often has an even greater impact on the algorithms and the set of prob­
lems that can be solved in that system then the types of process failures that may
occur. There is an especially large gap between the so­called asynchronous and
partially­synchronous network models. As was proven by Fischer, Lynch, and
Paterson in the famous paper [35], if the network connecting the processes is
asynchronous, meaning that there is no finite upper bound on how long it may
take for a message to arrive, then it is impossible to solve the so­called consensus
problem in finite time even if just one process may fail by crashing.

The consensus problem [65] allows the processes to unambiguously agree
on a single value. More formally, every correct process starts with some input
value, executes the prescribed protocol, and has to output a single output value.
All correct processes have to output the same value, and this value has to be
suggested by at least one process. Consensus turns out to be an extremely im­
portant problem as it allows to build a replicated state machine [52], which, in
turn, allows to implement a linearizable distributed version of any data type that
has a sequential specification [41].

Reconfiguration. Traditionally, distributed algorithms are designed with the
assumption that the set of processes executing the protocol is fixed and is known
a priori. This assumption contradicts one of the main goals of fault tolerance:
to build systems that will be able to run for very long periods of time (or even
indefinitely).

One of the main appeals of state machine replication is that it can be easily
reconfigured (at least, in crash fault­tolerant systems) [57]. For a long time it
was believed that asynchronous systems cannot be reconfigured without using
consensus. However, it was later refuted by DynaStore [8]. A long line of re­
search on asynchronous reconfiguration protocols followed [8, 42, 69, 70, 49].
However, the only reconfiguration protocol capable of withstanding Byzantine
faults [61] required a central trusted administrator to execute the reconfigura­

6

tion and to generate new private keys for all replicas on each reconfiguration.
Of course, with the assumption of a trusted administrator, this solution cannot
be considered fully Byzantine fault­tolerant, neither does it capture the spirit of
asynchronous reconfiguration as it relies on a totally ordered sequence of con­
figurations.2

In this thesis, a novel reconfiguration technique capable of tolerating Byzan­
tine failures is presented. The algorithm has optimal resilience (n ≥ 3f+1) and
asymptotically optimal running time (O(k) message delays for k concurrently
proposed reconfiguration requests), and it does not rely on a trusted administra­
tor.

Synchronous and partially­synchronousmodels. In the synchronousmodel,
there is a known upper bound ∆ on the maximum time that it takes for a mes­
sage to travel from one correct process to another and be processed. However,
in practice, even small and carefully crafted networks may have occasional par­
titions, downtime, or periods of instability. An algorithm designed in the syn­
chronous model may break in such a case unless ∆ is large enough so that any
breakdown is repaired within that time. Since the dependency of synchronous
algorithms usually depends on ∆, this creates an unpleasant trade­off: one has
to either choose∆ very large to account for potential network issues and signif­
icantly slow down the protocol, or choose∆ closer to the normal network delay
and risk system breakdown in case of an unanticipated large network delay.

One way to mitigate this trade­off is to design the algorithm in the partially­
synchronous model, which also assumes the existence of a known upper bound
∆ on the maximum message delay, but allows for periods of instability when
this upper bound does not hold. More formally, in the partially­synchronous
model, it is assumed that there is an unknown moment in time, called the global
stabilization time (GST for short), such that after that moment every message
sent by a correct process to another correct process is delivered and processed
within the time period ∆.

Formally, this assumption requires an infinitely large period of network sta­
2Note that [61] was published before the groundbreaking work of Aguilera et al. [8] that demonstrated the

possibility of asynchronous reconfiguration.

7

bility after GST. However, in practice, it is sufficient that the period of stability
is large enough for the protocol to make progress. Note that the processes do
not know and have no way to detect whether the period of stability has already
started. In other words, if a process sends a message to another process and does
not receive a reply within time period 2∆, the process has no way to determine
whether the addressee is faulty or the period of stability just have not started yet.

Fast Byzantine consensus. Consensus is one the most frequently­used build­
ing blocks for partially–synchronous distributed systems. It is therefore desir­
able for the consensus algorithms to be as efficient as possible. One of the key
performance characteristics is the good­case latency. While the worst­case la­
tency of consensus is bound to be at least Ω(f) [9, 33], most practical partially­
synchronous algorithms are capable of terminating in just a constant number of
round­trips if some optimistic conditions are met. In particular, Paxos [54, 55]
and Viestamped Replication [64, 58] are capable of terminating in just two mes­
sage delays (i.e., one round­trip) if all correct processes agree on the same leader
process and this leader is correct. This good­case latency is optimal even for
fault­free executions [43].

However, most practical Byzantine fault­tolerant consensus algorithms [24,
71, 21] have good­case latency of 3 or more message delays. This gap leads to
an extensive line of research [47, 62, 45, 3, 4, 40] towards fast Byzantine con­
sensus algorithms – the class of Byzantine fault­tolerant partially­synchronous
consensus algorithms that can reach agreements with the same delay as their
crash fault­tolerant counterparts.

FaB Paxos [62] achieves the optimal good­case latency of 2 message delays
at the expense of resilience: in order to tolerate f failures, the protocol needs
5f +1 replicas, which is significantly worse than the optimal number of 3f +1

replicas for Byzantine consensus [22]. The same paper [62] claims that 5f + 1

is the optimal resilience for a fast Byzantine consensus protocol. This lower
bound implies a trade­off between the optimal resilience and the optimal good­
case latency of Byzantine consensus. However, the lower bound proof contains
a mistake. In fact, as shown in this thesis, the lower bound of 5f + 1 processes
only applies to a restricted class of algorithms that assume that the processes are

8

split into disjoint sets of proposers and acceptors.
Surprisingly, as shown in this thesis, if the roles of proposers and acceptors

are performed by the same set of processes, there exists a fast f ­resilient Byzan­
tine consensus protocol that requires only 5f − 1 processes. By adding a “slow
path” [47, 62, 4] one can obtain a generalized version of the protocol that re­
quires n = max{3f + 2t − 1, 3f + 1} processes in order to be able to tolerate
f Byzantine failures and remain fast (terminate in two message delays) in the
presence of up to t Byzantine failures. In particular, this is the first protocol that
is able to remain fast in presence of a single Byzantine failure (t = 1) while
maintaining the optimal resilience (n = 3f + 1).

In this thesis, it is also shown that n = 3f + 2t− 1 is the true lower bound
for the number of processes required for a fast Byzantine consensus algorithm.
While for large values of f and t the difference of just two processes may seem
insignificant, practical deployments with small f and t can benefit a lot.

In order to avoid a single point of failure in a system while maintaining the
optimal good­case latency (f = t = 1), the protocol presented in this thesis re­
quires only 4 processes (as opposed to 6, required by prior protocols), which
coincides with the 3f + 1 lower bound on the number of processes for any
partially­synchronous Byzantine consensus algorithm.

Goals and objectives. The goal of this thesis was to study important problems
in different models of Byzantine fault­tolerant distributed computing.

The following objectives were addressed:

• Formalize the problem of asynchronous reconfiguration in the model with
Byzantine faults and find a solution;

• Rigorously prove the correctness of the resulting protocol;

• Implement reconfigurable Byzantine fault­tolerant atomic Max­Register;

• Create a fast Byzantine consensus algorithm that requires just n = 5f −1

replicas to tolerate f failures and prove its correctness;

• Prove a matching lower bound on the resilience of fast Byzantine consen­
sus.

9

1 Asynchronous Reconfiguration

In this chapter, the solution for the problem of asynchronous Byzantine fault­
tolerant reconfiguration is presented. The main results presented in this chapter
were previously published in the proceedings of DISC 2020 [50].

The rest of the chapter is organized as follows. The model assumptions
are formally stated in Section 1.1. Definitions for the principal abstractions
are given in Section 1.3. In Section 1.4, the implementation of the Dynamic
Byzantine Lattice Agreement is described, and, in Section 1.5, it is shown how
to use Dynamic Byzantine Lattice Agreement to implement reconfigurable ob­
jects. Possible implementations of access control are discussed in Section 1.6.
Related work is discussed in Section 1.7. Section 1.8 contains discussions on
the applicability of the presented algorithms, further research that has been done
partially on the basis of this work, and interesting open problems about asyn­
chronous Byzantine fault tolerant reconfiguration.

To make the presentation easier to follow, complete pseudocode and proofs
of correctness for the Dynamic Byzantine Lattice Agreement abstraction are
delegated to Appendices A.1 and A.2. Potential directions for optimizations
of the Dynamic Byzantine Lattice Agreement implementation are suggested in
Appendix A.3 Finally, as an application of the proposed constructions, an im­
plementation of a dynamic Max­Register is provided in Appendix A.4.

1.1 Model assumptions

1.1.1 Processes and channels

In this chapter, two types of processes are considered: replicas and clients. Let
Φ and Π denote the (possibly infinite) sets of replicas and clients, resp., that
potentially can take part in the computation. At any point in a given execution,
a process can be in one of the four states: idle, correct, halted, or Byzantine. A
process is idle if it has not taken a single step in the execution yet. A process
stops being idle by taking a step, e.g., sending or receiving a message. A process
is considered correct as long as it respects the algorithm it is assigned. A process
is halted if it executed the special “halt” command and stopped taking further

10

steps. Finally, a process is Byzantine if it prematurely stops taking steps of the
algorithm or takes steps that are not prescribed by it. A correct process can
later halt or become Byzantine. However, the reverse is impossible: a halted
or Byzantine process cannot become correct. A process that remains correct
forever is said to be forever­correct.

In this chapter, the network consisting of asynchronous reliable authenti­
cated point­to­point links between all pairs of processes is considered [22]. If a
forever­correct process p sends a messagem to a forever­correct process q, then
q eventually deliversm. Moreover, if a correct process q receives a messagem
from a process p at time t, and p is correct at time t, then p has indeed sentm to
q before t.

The adversary is assumed to be computationally bounded so that it is un­
able to break the cryptographic techniques, such as digital signatures, forward
security schemes [18] and one­way hash functions.

1.1.2 Configuration lattice

A join semi­lattice is a tuple (L,⊑), where L is a set partially ordered by the
binary relation⊑ such that for all elements x, y ∈ L, there exists the least upper
bound for the set {x, y}, i.e., the element z ∈ L such that x, y ⊑ z and ∀w ∈ L :

if x, y ⊑ w, then z ⊑ w. The least upper bound for the set {x, y} is denoted by
x ⊔ y. Operator ⊔ is called the join operator. It is an associative, commutative,
and idempotent binary operator on L. x ⊏ y is used to denote x ⊑ y and
x ̸= y. Elements x, y ∈ L are said to be comparable iff either x ⊑ y or y ⊏ x.
For conciseness, in the rest of this thesis, the word “lattice” will be used as a
synonym for “join semi­lattice”.

For any (potentially infinite) set A, (2A,⊆) is the lattice of all subsets of A,
called the powerset lattice of A. Note that ∀Z1, Z2 ⊆ A: Z1 ⊔ Z2 = Z1 ∪ Z2.

A configuration is an element of a lattice (C,⊑). Every configuration must
be associated with a finite set of replicas via a map replicas : C → 2Φ, and a quo­
rum system via a map quorums : C → 22

Φ, such that ∀C ∈ C : quorums(C) ⊆
2replicas(C). Additionally, there must be a function height : C → Z, such
that ∀C ∈ C : height(C) ≥ 0 and ∀C1, C2 ∈ C : if C1 ⊏ C2, then

11

height(C1) < height(C2). A configuration C is said to be higher (resp., lower)
than a configuration D iff D ⊏ C (resp, C ⊏ D).3

The set quorums(C) is said to be a dissemination quorum system at time
t iff every two sets (also called quorums) in quorums(C) have at least one
replica in common that is correct at time t and there is at least one quorum
Q ∈ quorums(C) such that all replicas in Q are correct at time t.

Consider the following as an example of a configuration lattice: letUpdates
be {+,−}×Φ, where tuple (+, p)means “add replica p” and tuple (−, p)means
“remove replica p”. Then C is the powerset lattice (2Updates,⊆). The mappings
replicas, quorums, and height are defined as follows: replicas(C) ≜ {s ∈
Φ | (+, s) ∈ C ∧ (−, s) /∈ C}, quorums(C) ≜ {Q ⊆ replicas(C) | |Q| >
2
3 |replicas(C)|}, and height(C) ≜ |C|. It is straightforward to verify that
quorums(C) is a dissemination quorum system when strictly less than one third
of replicas in replicas(C) are faulty.

Note that, if this configuration lattice is used, once a replica is removed from
the system, it cannot be added back with the same identifier. In order to add such
a replica back to the system, a new identifier must be used. This, however, does
not imply that for any configuration lattice, adding a replica back necessarily
involves generating a new identifier.

1.1.3 Forward­secure digital signatures

In a forward­secure digital signature scheme [18, 60, 19, 31], the public key
of a process is fixed while the secret key can evolve. Each signature is asso­
ciated with a timestamp. To generate a signature with timestamp t, the signer
uses secret key skt. The signer can update its secret key and get skt2 from skt1
if t1 < t2. However, “downgrading” the key to a lower timestamp is computa­
tionally infeasible. Hence, if a process removes all copies of its private key with
timestamps smaller than t, it will never be able to sign new messages with any
timestamp lower than t, even if the process turns Byzantine.

For simplicity, a forward­secure digital signature scheme is modelled as an
oracle that associates every process p with a timestamp stp (initially, ∀p : stp =

3Notice that “C is higher than D” implies “height(C) > height(D)”, but not vice versa.

12

0). The oracle provides p with three operations:

1. UpdateFSKey(t) sets stp to t ≥ stp;

2. FSSign(m, t) returns a signature formessagem and timestamp t if t ≥ stp,
otherwise it returns ⊥;

3. FSVerify(m, p, s, t) returns true iff s ̸= ⊥ was generated by invoking
FSSign(m, t) by process p.4

From the implementation point of view, one can easily obtain a forward­
secure signature scheme from any ordinary signature scheme by using one of
the generic constructions [18, 60]. In particular, for applications with potentially
large number of reconfiguration requests, the d­ary certificate tree approach due
to Bellare and Miner [18] with large values of d may be most suitable. In ap­
plications with large quorum sizes, a recently proposed forward­secure multi­
signature scheme [31] can be used to improve performance and lower the com­
munication cost.

The way forward­secure digital signatures can be used for implementing
Byzantine fault­tolerant reconfiguration is described in Section 1.2

1.2 Reconfiguration examples and challenges

Before diving into the technical details, let us first consider a few example ex­
ecutions in order to build the intuition about the desirable properties of the re­
configurable objects and the fundamental challenges that we will have to face
in order to implement those properties.

For simplicity, all examples in this section use the configuration lattice
(2Updates,⊆) described in Section 1.1.2.

1.2.1 Reconfiguration example

As an example of a reconfigurable distributed object, let us consider a single­
writer multi­reader Byzantine regular register [22]. One designated client

4It is assumed that anyone who knows the id of a process also knows its public key. For example, the public
key can be directly embedded into the process identifier.

13

(called writer and denoted as w) has access to the operation Write(v), and every
other client has access to the operation Read(). In case Read is not concur­
rent with a Write, it is supposed to return the last value written before the read.
Otherwise, it is allowed to return either the last value written or a concurrently
written value.

Suppose that at some moment in time the system is in configuration C and
is maintained by a set of 4 replicas: {r1, r2, r3, r4}. Replica r2 is Byzantine, but
pretends to be correct for the time being. Now suppose that replica r1 needs
to be temporarily turned off for maintenance. Simply turning off this replica is
risky: if r2 stops processing requests, the system will cease to make progress.
Hence, an administrator tries to replace r1 with replica r5 and issues a reconfig­
uration request R1 = {(−, r1), (+, r5)}. At the same time, due to the lack of
coordination, another administrator is trying to replace r1 with another replica
(r6), and issues a reconfiguration request R2 = {(−, r1), (+, r6)}.

C

D2

D1

r6 r2 r3 r4

r5 r2 r3 r4

r1 r2 r3 r4

Figure 1.1: Example of a fork.

One imaginable outcome for this scenario (depicted in Figure 1.1) would be
for both requests to be processed independently, causing a fork: two configu­
rations (D1 = C ⊔ R1 and D2 = C ⊔ R2) existing and operating at the same
time. It is easy to see why this outcome is undesirable. For example, the quorum
Q1 = {r2, r3, r5} in configurationD1 has no correct processes in the intersection
with the quorum Q2 = {r2, r4, r6} in configuration D2. If w thinks that D1 is
the relevant configuration and writes some value by communicating exclusively
with processes in quorum Q1, and some client q thinks that D2 is the relevant
configuration and reads a value by communicating exclusively with processes
in quorum Q2, then q may not discover the latest value written by w.

14

C D3D1

r6 r2 r3 r4r5 r2 r3 r4r1 r2 r3 r4 r5

C D3

r6 r2 r3 r4r1 r2 r3 r4 r5

(a)

C D3

r6 r2 r3 r4r1 r2 r3 r4 r5

D2

r6 r2 r3 r4

C

r1 r2 r3 r4

D2

r6 r2 r3 r4

(b)

Figure 1.2: Examples of valid combinations of local histories of processes. D3 = C ⊔R1⊔R2.

Ideally, the reconfiguration mechanism should provide an illusion of a sin­
gle chain of configurations that starts from the initial configuration C init. How­
ever, unambiguously agreeing even on a non­trivial prefix of this chain among
multiple processes would involve solving consensus, which is impossible in an
asynchronous system [35]. Instead, in the system proposed in this thesis, each
process has only partial knowledge (a subsequence) of the chain of configura­
tions. These subsequences are called the local histories of processes and must
be in some sense compatible. In particular, we want to avoid forks. Thanks to
the famous lattice agreement abstraction [16, 34], it is possible to guarantee that
the histories of correct processes are related by containment (i.e., subsets of one
another). As long as each individual history is sequential (i.e., all configurations
in it are comparable with ⊑), it is sufficient to prevent forks. Some examples
of possible combinations of local histories of correct processes are depicted in
Figure 1.2.

1.2.2 The “I still work here” attack

A Byzantine fault tolerant system may remain functioning only as long as some
assumptions on the set of Byzantine processes are satisfied. In static systems, it

15

is a common assumption that the fraction of Byzantine replicas does not exceed
one­third. More generally, one can assume a dissemination quorum system (as
defined in Section 1.1.2). If a dynamic system remains static (i.e., no new re­
configuration requests are made for some time), ideally, we would like to rely
only on the correctness of the last installed configuration. More generally, a
configuration is said to be superseded after a higher configuration is installed.
One of the biggest challenges in building reconfigurable Byzantine fault­tolerant
systems is to avoid relying on the correctness of superseded configurations.

In the example given before, after r1 has been removed from the system, we
should no longer rely on its correctness. For example, imagine that replica r1
was replaced because it became known that a hacker attack on this replica was
being prepared or because a vulnerability was found in its hardware. Imagine
that some client is not aware that configuration C is superseded and tries to ex­
ecute a Read request in C.5 Imagine also that replica r1 had turned Byzantine
by that moment and that replica r3 is not aware of the reconfiguration and still
thinks thatC is relevant (it may happen due to asynchrony). In this case, Byzan­
tine replicas r1 and r2 may collude in order to fool the client into believing that
C is still relevant and serve outdated information to the client.

This scenario demonstrates one of the many flavors of the so­called “I still
work here” attack [7]. In this particular example, it is sufficient to destroy
the private key on r1 after it is removed from the system, before finishing the
reconfiguration. However, in general, a more elaborate mechanism is required.

Imagine, for example, that some object is initially maintained by 4 repli­
cas. However, in order to increase fault­tolerance, 6 new replicas are added (see
Figure 1.3). This raises the resilience threshold (i.e., the number of Byzantine
processes that the system can tolerate) from 1 to 3. However, if 3 out of 4 initial
replicas turn Byzantine and some client tries to execute a request in the initial
configuration, the Byzantine replicas will be able to fool the client into believing
that the initial configuration is still relevant and return an outdated value to the
client. This makes our attempts to increase fault­tolerance by adding new repli­
cas futile. Note that there are no correct replicas that can remove their private

5Recall that in the asynchronous model we make no assumptions about the relative speed of processes. Hence,
it is impossible to make sure that all clients are always caught up with the latest configuration updates.

16

f = 1 f = 3
reconfiguration

time

Figure 1.3: The “I still work here” attack.

keys at any point in the execution because no replicas were removed from the
system.

In order to prevent this issue, before installing a new configuration, one
needs to make sure that the configurations that will be superseded are no longer
capable of processing requests from clients. In this thesis, a novel method to
implement this functionality is presented. It is based on the same ideas as the
“forgetting protocol” described in prior works [61, 7], but it utilizes forward­
secure digital signatures in order to avoid relying on a trusted administrator or a
total order of configurations.

In the proposed protocol, the height of the configuration is used as the times­
tamp. When a replica answers requests in configuration C, it signs messages
with timestamp height(C). When a higher configuration D is installed, the
replica invokes UpdateFSKey(height(D)). Therefore, even if the replicas are
to become Byzantine in the future, they will not be able to pretend that con­
figuration C is still active. The superseded configuration simply becomes non­
responsive, as in crash­fault­tolerant reconfigurable systems.

Unfortunately, in an asynchronous system it is impossible to make sure that
replicas of all superseded configurations remove their private keys as it would
require knowing the prefix of the global history of configurations, which is
equivalent to solving consensus. However, as is shown in this thesis, it is pos­
sible to make sure that the configurations in which replicas do not remove their
keys are never accessed by correct clients and are incapable of creating crypto­
graphic proofs for any statements.

17

1.2.3 The “slow reader” attack

Finally, there is a more subtle “slow reader” attack, which has not been previ­
ously studied in the literature. Intuitively, the slow reader attack is a certain way
how a reconfiguration request may intertwine with a concurrent client’s request
so that the client will be server stale data. As the explanation of this attack in­
volves many technical details, it is postponed to Section 1.4.1, where a detailed
example is provided.

1.3 Abstractions and definitions

1.3.1 Access control and object composition

Some abstractions are parametrized by boolean functions
VerifyInputValue(v, σ) and / or VerifyInputConfig(C, σ), where σ is
called a certificate. Moreover, some objects also export a boolean func­
tion VerifyOutputValue(v, σ), which lets anyone to verify that the value v was
indeed produced by the object. This helps to deal with Byzantine clients. In
particular, it achieves three important goals.

First, the parameter VerifyInputConfig allows to prevent Byzantine clients
from reconfiguring the system in an undesirable way or flooding the system
with excessively frequent reconfiguration requests. In Section 1.6, three simple
implementations of this functionality are proposed.

Second, the parameter VerifyInputValue(v, σ) allows to formally capture
the application­specific notions of well­formed client requests and access con­
trol. For example, in a key­value storage system, each client may be permitted
to modify only the key­value pairs that were created by this client. In this case,
the certificate σ is just a digital signature of the client.

Finally, the exported function VerifyOutputValue allows to compose sev­
eral distributed objects in such a way that the output of one object is passed as
input for another one. For example, in Section 1.5, one object (HistLA) operates
exclusively on sets of outputs of another object (ConfLA). The parameter func­
tion VerifyInputValue of HistLA and the exported function VerifyOutputValue
of ConfLA are used to guarantee that a Byzantine client cannot send to HistLA

18

a value that was not produced by ConfLA.

1.3.2 Definition of Byzantine lattice agreement

In this section, the Byzantine Lattice Agreement abstraction (BLA for short) is
defined. It serves as one of the main building blocks for constructing reconfig­
urable objects.

Byzantine Lattice Agreement is an adaptation of Lattice Agreement [16, 34]
that can tolerate Byzantine failures of processes (both clients and replicas). It is
parameterized by a join semi­lattice L, called the object lattice, and a boolean
function VerifyInputValue : L×Σ→ {true, false}, where Σ is a set of possible
certificates. The certificate σ is said to be a valid certificate for input value v iff
VerifyInputValue(v, σ) = true.

Value v ∈ L is said to be a verifiable input value in a given run iff at some
point in time in that run, some process knows a certificate σ that is valid for v.
The adversary must be unable to invert VerifyInputValue by computing a valid
certificate for a given value. This is the case, for example, when σ must contain
a set of unforgeable digital signatures.

The Byzantine Lattice Agreement abstraction exports one operation and one
function:6

• Operation Propose(v, σ) returns a response of the form (w, τ), where
v, w ∈ L, σ is a valid certificate for input value v, and τ is a certificate
for output value w;

• Function VerifyOutputValue(v, σ) returns a boolean value.

Similarly to input values, τ is said to be a valid certificate for output value w iff
VerifyOutputValue(w, τ) = true, and w is said to be a verifiable output value
in a given run iff at some point in that run, some process knows τ that is valid
for w.

Implementations of Byzantine Lattice Agreement must satisfy the following
properties:

6The difference between a function and an operation is that a function can be computed locally, without com­
municating with other processes, and the result only depends on the function’s input.

19

• BLA­Validity: Every verifiable output value w is a join of some set of
verifiable input values;

• BLA­Verifiability: If Propose(. . .) returns (w, τ) to a correct process, then
VerifyOutputValue(w, τ) = true;

• BLA­Inclusion: If Propose(v, σ) returns (w, τ) to a correct process, then
v ⊑ w;

• BLA­Comparability: All verifiable output values are comparable;

• BLA­Liveness: If the total number of verifiable input values is finite, every
call to Propose(v, σ) by a forever­correct process eventually returns.

For the sake of simplicity, liveness is only guaranteed when there are finitely
many verifiable input values. In practice, this assumption boils down to pro­
viding liveness iff there are sufficiently large periods of time when no new val­
ues are proposed. The abstraction that provides unconditional liveness is called
Generalized Lattice Agreement [34].

1.3.3 Definition of reconfigurable objects

It is possible to define a reconfigurable version of every static distributed ob­
ject by enriching its interface and imposing some additional properties. In this
section, the notion of a reconfigurable object is defined in a very abstract way.
By combining this definition with the definition of a Byzantine Lattice Agree­
ment, one can obtain a formal definition of a Reconfigurable Byzantine Lattice
Agreement. Similar combination can be performed with the definition of any
static distributed object (e.g., with the definition of a Max­Register from Ap­
pendix A.4).

A reconfigurable object exports an operation UpdateConfig(C, σ), which
can be used to reconfigure the system, and must be parameterized by a boolean
function VerifyInputConfig : C×Σ→ {true, false}, whereΣ is a set of possible
certificates. Similarly to verifiable input values, configuration C ∈ C is said to
be a verifiable input configuration in a given run iff at some point in that run,
some process knows σ such that VerifyInputConfig(C, σ) = true.

20

The total number of verifiable input configurations is required to be finite
in any given infinite execution of the protocol. In practice, this boils down to
assuming sufficiently long periods of stability when no new verifiable input con­
figurations appear. Similar requirements are imposed by all asynchronous re­
configurable storage systems [7, 70, 49, 10].

When a correct replica r is ready to serve user requests in a configuration
C, it triggers callback InstalledConfig(C). Replica r is said to install config­
uration C. At any given moment in time, a configuration is called installed if
some correct replica has installed it, and it is called superseded if some higher
configuration is installed.

Each reconfigurable object must satisfy the following properties:

• Reconfiguration Validity: Every installed configuration C is a join of
some set of verifiable input configurations. Moreover, all installed con­
figurations are comparable;

• Reconfiguration Liveness: Every call toUpdateConfig(C, σ) by a forever­
correct client eventually returns. Moreover, C or a higher configuration
will eventually be installed;

• Installation Liveness: If some configurationC is installed by some correct
replica, then every correct replica will eventually install C or a higher
configuration.

1.3.4 Definition of dynamic objects

Reconfigurable objects are hard to build because they need to solve two prob­
lems at once. First, they need to order and combine concurrent reconfiguration
requests. Second, the state of the object needs to be transferred across installed
configurations. The two problems are decoupled by the notion of a dynamic
object. Dynamic objects solve the second problem while “outsourcing” the first
one.

In Section 1.1, the configuration lattice C was introduced. A finite set h ⊆ C
is called a history iff all elements of h are comparable (i.e., ∀C1, C2 ∈ h: C1 ⊑
C2 or c2 ⊑ C1). Let HighestConf(h) be C ∈ h such that ∀ C ′ ∈ h : C ′ ⊑ C.

21

By definition of a history, HighestConf(h) is unambiguously defined for any
history h.

Dynamic objects must export an operation UpdateHistory(h, σ) and must be
parameterized by a boolean function VerifyHistory : H × Σ → {true, false},
where H is the set of all histories and Σ is the set of all possible certificates.
History h is said to be a verifiable history in a given execution iff at some point
in that execution, some process knows σ such that VerifyHistory(h, σ) = true.
A configuration C is called candidate iff it belongs to some verifiable history.
Also, a candidate configuration C is called active iff it is not superseded by a
higher configuration.

As with verifiable input configurations, the total number of verifiable
histories is required to be finite. Additionally, all verifiable histories
must be related by containment (i.e., comparable w.r.t. ⊆). Formally, if
VerifyHistory(h1, σ1) = true and VerifyHistory(h2, σ2) = true, then h1 ⊆ h2

or h2 ⊆ h1. The technique that can be used to build such histories is discussed
in Section 1.5.

Similarly to reconfigurable objects, a dynamic object must have the
InstalledConfig(C) callback. The object must satisfy the following properties:

• Dynamic Validity: Only a candidate configuration can be installed by a
correct replica;

• Dynamic Liveness: Every call to UpdateHistory(h, σ) by a forever­correct
client eventually returns. Moreover, HighestConf(h) or a higher config­
uration will eventually be installed;

• Installation Liveness (the same as for reconfigurable objects): If some
configuration C is installed by some correct replica, then C or a higher
configuration will eventually be installed by all correct replicas.

Note that Dynamic Validity implies that all installed configurations are compa­
rable, since all verifiable histories are related by containment and all configura­
tions within one history are comparable.

While reconfigurable objects provide general­purpose reconfiguration in­
terface, dynamic objects are weaker, as they require an external service to build

22

comparable verifiable histories. In this thesis, it is shown how to build dynamic
objects in the Byzantine model and how to create reconfigurable objects using
dynamic objects as building blocks. This technique is applicable to a large class
of objects.

1.3.5 Quorum system assumptions

Most fault­tolerant implementations of distributed objects impose some require­
ments on the subsets of processes that can be faulty. A configuration C is said
to be correct at time t iff replicas(C) is a dissemination quorum system at time
t (as defined in Section 1.1). Correctness of the implementation of dynamic ob­
jects relies on the assumption that active candidate configurations are correct.
Once a configuration (i.e., a higher configuration is installed), no assumptions
are made about the correctness of the replicas in that configuration.

For reconfigurable objects, a slightly more conservative requirement is im­
posed: every combination of verifiable input configurations that is not yet su­
perseded must be correct. Formally:

Quorum availability: Let C1, . . . , Ck be verifiable input configurations such
that C = C1 ⊔ . . . ⊔ Ck is not superseded at time t. Then quorums(C)

must be a dissemination quorum system at time t.

Correctness of the reconfigurable objects relies solely on correctness of the
dynamic building blocks. Formally, when k configurations are concurrently
proposed, all possible combinations, i.e., 2k − 1 configurations, are required
to be correct. However, in practice, at most k of them will be chosen to be put
in verifiable histories, and only those configurations will be accessed by correct
processes. A more conservative requirement is imposed because it is not known
a priori, which configurations will be chosen by the algorithm.

1.3.6 Broadcast primitives

To make sure that no process is “left behind”, a variant of reliable broadcast
primitive [22] is required. The primitive must ensure two properties:

23

(1) If a forever­correct process p broadcasts a message m, then p eventually
deliversm;

(2) If some message m is delivered by a forever­correct process, every
forever­correct process eventually deliversm.

Note that no assumptions are made about any processes that are not forever­
correct. In practice such a primitive can be implemented by a gossip proto­
col [44]. This primitive is “global” in a sense that it is not bound to any particu­
lar configuration. In pseudocode, “RB­Broadcast ⟨…⟩” is used to denote a call
to the “global” reliable broadcast.

Additionally, a “local” uniform reliable broadcast primitive [22] is assumed
to be available as well. The primitive is “local” because every message sent
via this primitive is associated with some configuration. If this configuration is
superseded at some point in time, no assumptions are made about the delivery
of the message (for example, it is okay if no process ever delivers the message
in this case). However, if the configuration is never superseded, then a stronger
liveness property is required:

(2’) if some correct process p ∈ replicas(C) delivered some message m via
the instance of the broadcast primitive associated with configuration C,
then every forever­correct process q ∈ replicas(C)will eventually deliver
m, even if p later turns Byzantine.

This semantic can be easily achieved by making sure that every message is
replicated to a quorum of replicas in C before delivering it [22]. In pseudocode,
“URB­Broadcast ⟨…⟩ in C” is used to denote a call to the “local” uniform re­
liable broadcast in configuration C.

1.4 Dynamic Byzantine Lattice Agreement

Dynamic Byzantine Lattice Agreement abstraction (DBLA for short) is the main
building block in the construction of reconfigurable objects. Its specification is a
combination of the specification of Byzantine Lattice Agreement (Section 1.3.2)
and the specification of a dynamic object (Section 1.3.4). The interface of a

24

VerifyHistory

VerifyInputValue DBLA

InstalledConfig

Propose

VerifyOutputValue

UpdateHistory

Figure 1.4: The interface of the DBLA object. Parameters are depicted on the left side, opera­
tions and functions are on the right side, and callbacks are at the top. The parts of the interface
that are inherited from BLA are depicted as solid black arrows, while the parts of the interface
that are inherited from the specification of a dynamic object are depicted as dashed blue arrows.

DBLA object is depicted in Figure 1.4. To make the concept easier to grasp,
here, a high­level description of the DBLA implementation is given. The com­
plete pseudocode, proofs of correctness, and additional discussions on possible
optimizations are delegated to Appendices A.1, A.2, and A.3 respectively.

As mentioned earlier, forward­secure digital signatures are used to guar­
antee that superseded configurations cannot affect correct clients or forge cer­
tificates for output values. Ideally, before a new configuration C is installed
(i.e., before a correct replica triggers InstalledConfig(C) upcall), one needs to
make sure that the replicas of all candidate configurations lower than C invoke
UpdateFSKey(height(C)). However, this would require the replica to know the
set of all candidate configurations lower than C. Unambiguously agreeing on
this set would require solving consensus, which is known to be impossible in a
fault­prone asynchronous system [35].

Instead, all candidate configurations are classified in two categories: piv­
otal and tentative. A candidate configuration is called pivotal if it is the highest
configuration in some verifiable history. Otherwise it is called tentative. A nice
property of pivotal configurations is that it is impossible to “skip” one in a verifi­
able history. Indeed, if C1 = HighestConf(h1) and C2 = HighestConf(h2) and
C1 ⊏ C2, then, since all verifiable histories are related by containment, h1 ⊆ h2

and C1 ∈ h2. This allows the protocol to make sure that, before a configu­
ration C is installed, the replicas in all pivotal (and, possibly, some tentative)
configurations lower than C update their keys. As for tentative configurations,
the protocol ensures that they are harmless, in a sense that correct clients never
interact with them and they cannot create certificates for output values.

In order to reconfigure a DBLA object, a correct client must use reliable

25

p

r4

r1

r2

r3

q

{1}
{}
{}

{}
{2}

{1}
{1}
{1}

{}
{2} {1,2}

{2}

{1,2}

{1,2}
{2}

{1,2}
{1} {1,2}
"

"

(a)An example execution of two concurrent Propose op­
erations.

p

r4

r1

r2

r3

{1}
{2}

{2}

{1}

"

{1} restart

{} {1}

new replicas

{1, 2}

(b) An example execution of a Propose operation con­
current with a reconfiguration.

Figure 1.5: Example executions of the DBLA protocol. Solid black arrows (resp., dashed blue
arrows) correspond to the messages exchanged during the first (resp., the second) stage of the
Propose protocol. Dotted red lines correspond to the messages exchanged during reconfigura­
tion. The numbers represent the sets of verifiable input values known to the processes. Replica
r3 is Byzantine and always responds to PROPOSE messages with the same set of verifiable input
values as in the message itself. In (b), replicas r1, r2, and r4 also become Byzantine after the
reconfiguration.

broadcast to distribute the new verifiable history. Each correct process p main­
tains, locally, the largest (with respect to ⊆) verifiable history it delivered so
far through reliable broadcast. It is called the local history of process p and is
denoted by historyp. Notation Chighest

p is used to denote the most recent config­
uration in p’s local history (i.e., Chighest

p = HighestConf(historyp)). Whenever a
replica r updates historyr, it invokes UpdateFSKey(height(Chighest

r)).
Similarly, each process p keeps track of all verifiable input values it has

seen curValsp ⊆ L × Σ, where L is the object lattice and Σ is the set of all
possible certificates. Sometimes, during the execution of the protocol, processes
exchange these sets. Whenever a process p receives a message that contains a
set of values with certificates vs ⊆ L×Σ, it checks that the certificates are valid
(i.e., ∀ (v, σ) ∈ vs : VerifyInputValue(v, σ) = true) and adds these values and
certificates to curValsp.

1.4.1 Client implementation

The client’s protocol is simple. As was mentioned earlier, the operation
UpdateHistory(h, σ) is implemented as RB­Broadcast ⟨NEWHISTORY, h, σ⟩.
The rest of the reconfiguration process is handled by the replicas. The proto­
col for the operation Propose(v, σ) consists of two stages: proposing a value
and confirming the result.

26

The first stage (proposing) mostly follows the implementation of lattice
agreement by Faleiro et al. [34]. Client p repeatedly sends message ⟨PROPOSE,
curValsp, seqNump, C⟩ to all replicas in replicas(C), where PROPOSE is the mes­
sage descriptor, curValsp is the set of verifiable input values known to the client
along with the corresponding certificates, C = Chighest

p , and seqNump is a se­
quence number used by the client to match sent messages with replies.

After sending these messages to replicas(C), the client waits for responses
of the form ⟨PROPOSERESP, vs, sig, sn⟩, where PROPOSERESP is the message de­
scriptor, vs is the set of all verifiable input values known to the replica with
valid certificates (including those sent by the client), sig is a forward­secure sig­
nature with timestamp height(C), and sn is the same sequence number as in the
message from the client.

During the first stage, three things can happen: (1) the client learns about
some new verifiable input values from one of the PROPOSERESPmessages; (2) the
client updates its local history (by delivering it through reliable broadcast); and
(3) the client receives a quorum of valid replies with the same set of verifiable
input values. In the latter case, the client proceeds to the second stage. In the
first two cases, the client simply restarts the operation. Recall that, according
to the BLA­Liveness property, termination of client requests is only guaranteed
when the number of verifiable input values is finite. Additionally, the number
of verifiable histories is assumed to be finite. Hence, the number of restarts
will also be finite. This is the main intuition behind the liveness of the client’s
protocol.

In the second (confirming) stage of the protocol, the client simply sends the
acknowledgments it has collected in the first stage to the replicas of the same
configuration. The client then waits for a quorum of replicas to reply with a
forward­secure signature with timestamp height(C). The value returned from
the Propose operation is simply the join of all verifiable input values in curValsp.
This second stage is needed to make sure that during the execution of the first
stage the configuration was not superseded.

The example in Figure 1.5a illustrates how the first stage of the algorithm
ensures the comparability of the results when no reconfiguration is involved.
In this example, clients p and q concurrently propose values {1} and {2}, re­

27

spectively, from the lattice (L,⊑) = (2N,⊆). Client p successfully returns the
proposed value {1} while client q is forced to refine its proposal and return the
combined value {1, 2}. The quorum intersection prevents the clients from re­
turning incomparable values (e.g., {1} and {2}).

The example in Figure 1.5b illustrates how reconfiguration can interfere with
an ongoing Propose operation in what is called the “slow reader” attack, and
how the second stage of the protocol prevents a safety violation. Imagine that
some correct client completed the Propose operation and received value {2} be­
fore client p started the execution. This is reflected on the picture by the fact that
all correct replicas in quorum {r1, r3, r4} store value {2}. Then client p executes
Propose({1}, σ), where σ is a valid certificate for input value {1}. Due to the
BLA­Comparability, BLA­Inclusion, and BLA­Validity properties of Byzantine
Lattice Agreement, the only valid output value for client p is {1, 2} (assuming
that there are no other verifiable input values). The client successfully reaches
replicas r2 and r3 before the reconfiguration. None of them tell the client about
the input value {2}, because r2 is outdated and r3 is Byzantine. The message
from p to r1 is delayed. Meanwhile, a new configuration is installed, and all
replicas of the original configuration become Byzantine. When the message
from p finally reaches r1, the replica is already Byzantine and it can pretend
that it has not seen any verifiable input values other than {1}. The client then
finishes the first stage of the protocol with value {1}. Returning this value from
from the Propose operation would violate BLA­Comparability.

Luckily, the second stage of the protocol prevents the safety violation. Since
replicas r2 and r4 updated their private keys during the reconfiguration, they are
unable to send the signed confirmations with timestamp height(C) to the client.
Hence, the client will not be able to complete the operation in configuration C

and will wait until it receives a new verifiable history via reliable broadcast and
will restart the operation in a higher configuration.

The certificate for the output value v ∈ L produced by the Propose protocol
in a configuration C consists of:

1. the set of verifiable input values (with certificates for them) from the first
stage of the algorithm (the join of all these values must be equal to v);

28

2. a verifiable history (with a certificate for it) that confirms that C is a piv­
otal configuration;

3. the quorum of signatures from the first stage of the algorithm;

4. the quorum of signatures from the second stage of the algorithm.

Intuitively, the only way for a Byzantine client to obtain such a certificate is to
benignly follow the Propose protocol.

1.4.2 Replica implementation

Each replica r maintains, locally, its current configuration (denoted by Ccurr
r)

and the last configuration installed by this replica (denoted by C inst
r). The fol­

lowing invariant is maintained: C inst
r ⊑ Ccurr

r ⊑ Chighest
r . Intuitively, Ccurr

r = C

means that replica r knows that there is no need to transfer state from configu­
rations lower than C, either because r already performed the state transfer from
those configurations, or because it knows that sufficiently many other replicas
did. C inst

r = C means that the replica knows that sufficiently many replicas inC
have up­to­date states, and that configuration C is ready to serve user requests.

Each client message is associated with some configuration C. The replica
only answers the message when C = C inst

r = Ccurr
r = Chighest

r . If C ⊏ Chighest
r ,

the replica simply ignores the message. Due to the properties of reliable broad­
cast, the client will eventually learn about Chighest

r and will repeat its request
there (or in an even higher configuration). If C inst

r ⊏ C and Chighest
r ⊑ C, the

replica waits until C is installed before processing the message. Finally, if C is
incomparable with C inst

r or Chighest
r , then, since all candidate configurations are

required to be comparable, the message is sent by a Byzantine process and the
replica should ignore it.

When a correct replica r receives a PROPOSE message, it adds the newly
learned verifiable input values to curValsr and sends curValsr back to the client
with a forward­secure signature with timestamp height(C). When a correct
replica receives a CONFIRMmessage, it simply signs the set of acknowledgments
in it with a forward­secure signature with timestamp height(C) and sends the
signature to the client.

29

Algorithm 1 DBLA state transfer, code for replica r

1: upon Ccurr ̸= HighestConf({C ∈ history | r ∈ replicas(C)})
2: let Cnext = HighestConf({C ∈ history | r ∈ replicas(C)})
3: let S = {C ∈ history | Ccurr ⊑ C ⊏ Cnext}
4: seqNum← seqNum+ 1
5: for each C ∈ S do
6: send ⟨UPDATEREAD, seqNum, C⟩ to replicas(C)
7: wait for (C ⊏ Ccurr) ∨ (responses from any Q ∈ quorums(C) with s.n. seqNum)
8: if Ccurr ⊏ Cnext then
9: Ccurr ← Cnext

10: URB­Broadcast ⟨UPDATECOMPLETE⟩ in Cnext

11: upon receive ⟨UPDATEREAD, sn, C⟩ from replica r′
12: wait for C ⊏ HighestConf(history)
13: send ⟨UPDATEREADRESP, curVals, sn⟩ to r′

14: upon receive ⟨UPDATEREADRESP, vs, sn⟩ from replica r′
15: if VerifyInputValues(vs \ curVals) then curVals← curVals ∪ vs

16: upon URB­deliver ⟨UPDATECOMPLETE⟩ in C from quorum Q ∈ quorums(C)
17: wait for C ∈ history
18: if C inst ⊏ C then
19: if Ccurr ⊏ C then Ccurr ← C
20: C inst ← C
21: trigger upcall InstalledConfig(C)
22: if r /∈ replicas(C) then halt

A very important part of the replica’s implementation is the state transfer
protocol. The pseudocode for it is presented in Algorithm 1. Note that the
subscript r is omitted in the pseudocode because each process can only access
its own variables directly. LetCnext

r be the highest configuration in historyr such
that r ∈ replicas(Cnext

r). Whenever Ccurr
r ̸= Cnext

r , the replica tries to “move”
to Cnext

r by reading the current state from all configurations between Ccurr
r and

Cnext
r one by one in ascending order (line 5). In order to read the current state

from configurationC ⊏ Cnext
r , replica r sendsmessage ⟨UPDATEREAD, seqNumr,

C⟩ to all replicas in replicas(C). In response, each replica r1 ∈ replicas(C)

sends curValsr1 to r in an UPDATEREADRESP message (line 13). However, r1
replies only after its private key is updated to a timestamp larger than height(C)

(line 12). For any correct replica q, the following invariant is maintained: stq =
height(HighestConf(historyq)), where stq is the timestamp of the private key of
q.

30

If r receives a quorum of replies from the replicas ofC, there are two distinct
cases:

• C is still active. In this case, the quorum intersection property still holds
for C, and replica r can be sure that (1) if some Propose operation has
either completed in configuration C or reached the second stage, v ⊑
JoinAll(curValsr), where v is the value returned by the Propose operation
and JoinAll(curValsr) is the join of all verifiable input values in the set
curValsr; and (2) if some Propose operation has not yet reached the second
stage, it will not be able to complete in configuration C (see the example
in Figure 1.5b).

• C is already superseded. In this case, by definition, a higher configuration
is installed, and, intuitively, replica r will get the necessary state from that
higher configuration.

It may happen that configuration C is already superseded and r will not receive
sufficiently many replies from the replicas of C. However, in this case r will
eventually discover that some higher configuration is installed, and it will update
Ccurr

r (line 19).
When a correct replica completes transferring the state to some configuration

C, it notifies other replicas about it by broadcasting message UPDATECOMPLETE
in configuration C (line 10). A correct replica installs a configuration C if it
receives such messages from a quorum of replicas in C (line 16). Because the
protocol must satisfy the Installation Liveness property (if one correct replica
installs a configuration, every forever­correct replica must eventually install
this or a higher configuration), the UPDATECOMPLETE messages are distributed
through the local uniform reliable broadcast primitive that was introduced in
Section 1.3.6.

1.4.3 Implementing other dynamic objects

In order to adopt other asynchronous Byzantine fault­tolerant static algorithms
to the dynamic model, the same set of techniques can be applied, including:

1. the state transfer protocol (relying on forward­secure signatures);

31

VIV ConfLA HistLA

VIV
VH

VH

VIVVerifyInputConfig

VerifyInputValue

InstalledConfig

DObj
Data Operations

UpdateConfig

Figure 1.6: The structure of dependencies in the implementation of a reconfigurable ob­
ject. An arrow from an object A to an object B marked with VIV (resp., VH) indicates that
A.VerifyInputValue (resp., A.VerifyHistory) is implemented using B.VerifyOutputValue.

2. the use of an additional round­trip to prevent the “slow reader” attack;

3. the structure of cryptographic proofs ensuring that tentative configura­
tions cannot create valid certificates for output values.

To illustrate this, in Appendix A.4, the dynamic version of Max­Register [13] is
presented. Additionally, the dynamic version of the Access Control abstraction
is discussed in Section 1.6.

1.5 Reconfigurable objects

While dynamic objects are important building blocks, they are not very useful by
themselves as they require an external source of comparable verifiable histories.
In this section, it is shown how to combine several dynamic objects to obtain a
single reconfigurable object. Similarly to dynamic objects, the specification of a
reconfigurable object can be obtained as a combination of the specification of a
static object with the specification of an abstract reconfigurable object from Sec­
tion 1.3.3. In particular, compared to static objects, reconfigurable objects have
one more operation – UpdateConfig(C, σ), must be parameterized by a boolean
function VerifyInputConfig(C, σ), and must satisfy Reconfiguration Validity,
Reconfiguration Liveness, and Installation Liveness.

1.5.1 Implementation

A reconfigurable object is created by combining three dynamic ones. The first
one is the dynamic object that executes clients’ operations (let us call it DObj).

32

For example, in order to implement a reconfigurable version of Byzantine Lat­
ticeAgreement, one needs to take a dynamic version of Byzantine LatticeAgree­
ment as DObj. Similarly, in order to implement a reconfigurable version of
Max­Register [13], one needs to take a dynamic version of Max­Register as
DObj (see Appendix A.4). The two remaining objects are used to build ver­
ifiable histories: ConfLA is a DBLA operating on the configuration lattice C,
and HistLA is a DBLA operating on the powerset lattice 2C . The relationships
between the three dynamic objects are depicted in Figure 1.6.

Algorithm 2 Reconfigurable object
▷ Common code
Parameters:

23: Lattice of configurations C and the initial configuration C init

24: Boolean function VerifyInputConfig(C, σ)
25: Dynamic object DObj, which we want to make reconfigurable

Shared objects:
26: DObj ▷ the dynamic object being transformed
27: ConfLA ▷ DBLA on lattice C
28: HistLA ▷ DBLA on lattice 2C

▷ Code for client p
29: Data operations are performed directly on DObj.

30: operation UpdateConfig(C, σ)
31: let (D, σD) = ConfLA.Propose(C, σ)
32: let (h, σh) = HistLA.Propose({D}, σD)
33: DObj.UpdateHistory(h, σh)
34: ConfLA.UpdateHistory(h, σh)
35: HistLA.UpdateHistory(h, σh)

▷ Code for replica r
36: upon receive upcall InstalledConfig(C) from all DObj, ConfLA, and HistLA
37: trigger upcall InstalledConfig(C)

▷ Parameters specification
38: function ConfLA.VerifyInputValue(v, σ) = VerifyInputConfig(v, σ)
39: function HistLA.VerifyInputValue(v, σ)
40: if v is not a set of 1 element then return false
41: let {C} = v
42: return ConfLA.VerifyOutputValue(C, σ)
43: function VerifyHistory(h, σ) = HistLA.VerifyOutputValue(h, σ) ▷ used by all dynamic

objects

The pseudocode is presented in Algorithm 2. All data operations are per­
formed directly on DObj. To update a configuration, the client first submits

33

its proposal to ConfLA and then submits the result as a singleton set to HistLA.
Due to the BLA­Comparability property, all verifiable output values produced
by ConfLA are comparable, and any combination of them would create a well­
formed history as defined in Section 1.3.4. Moreover, the verifiable output val­
ues of HistLA are related by containment, and, therefore, can be used as verifi­
able histories in dynamic objects. They are used to reconfigure all three dynamic
objects (lines 33–35).

Cryptographic keys. In Algorithm 2, several dynamic objects are used. Cor­
rect replicas are assumed to have separate public/private key pairs for each dy­
namic object. This prevents replay attacks across objects and allows each dy­
namic object to manage its keys separately. Later in this section, it is discussed
how to avoid this assumption.

1.5.2 Proof of correctness

In the following two lemmas it is shown that the dynamic objects (ConfLA,
HistLA, and DObj) are used correctly, i.e., all requirements imposed on veri­
fiable histories are satisfied.

Lemma 1.1. All histories passed to the dynamic objects by correct processes
(Algorithm 2, lines 33–35) are verifiable with VerifyHistory (Algorithm 2,
line 43).

Proof. Follows from the BLA­Verifiability property of HistLA.

Lemma 1.2. All histories verifiable with VerifyHistory (Algorithm 2, line 43)
are (1) well­formed (that is, consist of comparable configurations) and (2) re­
lated by containment. Moreover, (3) in any given infinite execution, there is only
a finite number of histories verifiable with VerifyHistory.

Proof. (1) follows from the BLA­Comparability property of ConfLA, the BLA­
Validity property ofHistLA, and the definition ofHistLA.VerifyInputValue (Al­
gorithm 2, line 39).

(2) follows directly from the BLA­Comparability property of HistLA.

34

(3) follows from the requirement of finite number of verifiable input con­
figurations and the BLA­Validity property of ConfLA and HistLA. Only a finite
number of configurations can be formed byConfLA out of a finite number of ver­
ifiable input configurations, and only a finite number of histories can be formed
by HistLA out of the configurations produced by ConfLA.

Theorem 1.3 (Transformation safety). Our implementation satisfies the Recon­
figuration Validity property of a reconfigurable object. That is, (1) every in­
stalled configuration C is a join of some set of verifiable input configurations;
and (2) all installed configurations are comparable.

Proof. (1) follows from the BLA­Validity property of ConfLA and HistLA and
the Dynamic Validity property of the underlying dynamic objects. (2) follows
directly from the Dynamic Validity property of the underlying dynamic objects.

Theorem 1.4 (Transformation liveness). Our implementation satisfies the live­
ness properties of a reconfigurable object: Reconfiguration Liveness and In­
stallation Liveness.

Proof. Reconfiguration Liveness follows from the BLA­Liveness property of
ConfLA and HistLA and the Dynamic Liveness property of the underlying dy­
namic objects. Installation Liveness follows from line 36 of the implementation
and the Installation Liveness of the underlying dynamic objects.

1.5.3 Discussion

Performance. Due to the BLA­Validity property ofConfLA andHistLA, when
k reconfiguration requests are executed concurrently, at most k new verifiable
histories will be created and the total number of candidate configurations will
not exceed k + 1 (including the initial configuration). Hence, only O(k) con­
figurations are accessed for state transfer, and not an exponential number as in
some earlier work on reconfiguration [8, 37]. This is known to be optimal [70].

Bootstrapping. The relationship between lattice agreement and reconfigura­
tion has been studied before [42, 49]. In particular, as shown in [42], lattice

35

agreement can be used to build comparable configurations. In this thesis, a step
further is taken in this direction. Two separate instances of lattice agreement are
used: one to build comparable configurations (ConfLA) and one to build histo­
ries out of them (HistLA). These two LA objects can then be used to reconfigure
a single dynamic object (DObj).

However, this raises a question: how to reconfigure the lattice agreement
objects themselves? The intuition behind the proposed solution is the idea that
is sometimes referred to as “bootstrapping”. The lattice agreement objects are
used to reconfigure themselves and at least one other object (DObj). This implies
that the lattice agreement objects share the configurations with DObj. The most
natural implementation is that the code for all three dynamic objects (ConfLA,
HistLA, and DObj) will be executed by the same set of replicas.

Bootstrapping is a dangerous technique because, if applied badly, it can lead
to infinite recursion. However, the solution is structured in such a way that
there is no recursion at all: the client first makes normal requests to ConfLA and
HistLA and then uses the resulting history to reconfigure all dynamic objects,
as if this history was obtained by the client from the outside of the system. It is
important to note that the liveness of the call HistLA.VerifyOutputValue(h, σ)
is not affected by reconfiguration: the function simply checks some digital sig­
natures and is guaranteed to always terminate given enough processing time.

Shared parts. All implementations of dynamic objects presented in this thesis
have a similar structure. For example, they all share the same state transfer im­
plementation (see Algorithm 1). However, implementations of other dynamic
objects might have very different implementations. Therefore, in the transfor­
mation, DObj is used as a “black box” and no assumptions are made about its
implementation. Moreover, for simplicity, the two DBLA objects are used as
“black boxes” as well. In fact, ConfLA and HistLA may have different imple­
mentations and the transformation will still work as long as they satisfy the spec­
ification from Section 1.3. However, this generalization comes at a cost.

In particular, if implemented naively, a single reconfigurable object will run
several independent state transfer protocols, and a single correct replica will
have several private/public key pairs (as mentioned earlier in this section). How­

36

ever, if all dynamic objects have similar implementations of their state transfer
protocols (as in this thesis), this can be done more efficiently by combining all
state transfer protocols into one, which would need to transfer the states of all
dynamic objects andmake sure that the superseded configurations are harmless.

1.6 Access control

The implementation of reconfigurable objects relies on the parameter function
VerifyInputConfig. Moreover, if the transformation from Section 1.5 is applied
to the implementation of DBLA from Section 1.4, the resulting reconfigurable
object will rely on the parameter function VerifyInputValue. The implementa­
tion of these parameters is highly application­specific. For example, in a storage
system, it is reasonable to only allow requests that modify some data if they are
accompanied by a digital signature produced by the owner of the data. For the
sake of completeness, in this section, three generic implementations for these
parameter functions are presented. Each of these implementations is suitable
for some applications.

In order to do this, the Access Control object is introduced. It exports one
operation and one function:

• Operation RequestCert(v) returns a certificate σ, which can be verified
with VerifyCert(v, σ), or the special value ⊥, indicating that the permis­
sion was denied;

• Function VerifyCert(v, σ) returns a boolean value.

The implementation of Access Control must satisfy the following property:

• Certificate Verifiability: If RequestCert(v) returned σ to a correct process,
then VerifyCert(v, σ) = true.

In Sections 1.6.1–1.6.3, three different implementations of the Dynamic Ac­
cess Control object are presented. In Section 1.6.4, two methods to use the Dy­
namic Access Control abstraction in order to implement the parameter functions
VerifyInputValue and VerifyInputConfig are demonstrated.

37

1.6.1 Sanity­check approach

Algorithm 3 Vote­Based Dynamic Access Control
▷ Code for client p

44: operation RequestCert(v)
45: let C = HighestConf(history)
46: seqNum← seqNum+ 1 ▷ used to match requests with responses

▷ Phase one: request
47: send ⟨REQUEST, v, seqNum, C⟩ to replicas(C)
48: wait for (HighestConf(history) ̸= C) ∨ (received enough Yes­votes with valid signa­

tures)
49: ∨ (received a quorum of votes in total)
50: if HighestConf(history) ≠ C then retry (goto line 45)
51: if received not enough valid Yes­votes then return ⊥ ▷ access denied
52: let acks1 = {Yes­votes received on line 49}

▷ Phase two: confirm
53: send ⟨CONFIRM, acks1, seqNum, C⟩ to replicas(C)
54: wait for (HighestConf(history) ̸= C) ∨ (replies from a quorum of replicas with valid

signatures)
55: if HighestConf(history) ≠ C then retry (goto line 45)
56: let acks2 = {acknowledgments received on line 54}

▷ Return certificate
57: return (history, σhistory, acks1, acks2)

▷ Code for replica r
58: upon receive ⟨REQUEST, v, sn, C⟩ from client c
59: wait for C = C inst ∨ C ⊏ HighestConf(history)
60: if C = HighestConf(history) then
61: if VoteYes(v) then send ⟨YES, FSSign((YES, v, c), height(C)), sn⟩ to c
62: else send ⟨NO, sn⟩ to c

63: upon receive ⟨CONFIRM, acks, sn, C⟩ from client c
64: wait for C ∈ history
65: if C = HighestConf(history) then
66: let sig = FSSign((CONFIRMRESP, acks), height(C))
67: send ⟨CONFIRMRESP, sig, sn⟩ to c

One of the simplest implementations of access control in a static system is
to require at least b+ 1 replicas to sign each certificate, where b is the maximal
possible number of Byzantine replicas, sometimes called the resilience thresh­
old. The correct replicas can perform some application­specific sanity checks
before approving requests.

The key property of this approach is that it guarantees that each valid certifi­

38

cate is signed by at least one correct replica. In many cases, this is sufficient to
guarantee resilience both against the Sybil attacks [30] and against attempts to
flood the system with reconfiguration requests. The correct replicas can check
the identities of the new participants and refuse to sign excessively frequent re­
quests.

In dynamic asynchronous systems, just providing b+1 signatures is not suf­
ficient. Despite the use of forward­secure signatures, in a superseded pivotal
configuration there might be significantly more than b Byzantine replicas with
their private keys not removed (in fact, at least 2b). The straightforward way to
implement this policy in a dynamic system is to add the confirming phase, as in
the implementation of Dynamic Byzantine Lattice Agreement (see Section 1.4),
after collecting b + 1 signed approvals. The confirming phase guarantees that,
during the execution of the first phase, the configuration was active. The state
transfer protocol should be the same as for DBLA with the exception that no
actual state is being transferred. The only goal of the state protocol in this case
is it to make sure that the replicas update their private keys before a new con­
figuration is installed.

This and the following approach can be generally described as “vote­based”
access control policies. The pseudocode for their dynamic implementation is
presented in Algorithm 3.

1.6.2 Quorum­based approach (“on­chain governance”)

A more powerful strategy in a static system is to require a quorum of replicas
to sign each certificate. An important property of this implementation is that it
can detect and prevent conflicting requests. More formally, suppose that there
are values v1 and v2, for which the following two properties should hold:

• Both are acceptable: RequestCert(vi) should not return ⊥ unless
RequestCert(vj) was invoked in the same execution, where j ̸= i.

• At most one may be accepted: if some process knows σi such
that VerifyCert(vi, σi) then no process should know σj such that
VerifyCert(vj, σj).

39

Note that it is possible that neither v1 nor v2 is accepted by the Access Control
if the requests are made concurrently. To guarantee that exactly one certificate
is issued, one would need to implement consensus, which is impossible in asyn­
chronous model [35]. If a correct replica has signed a certificate for value vi,
it should store this fact in persistent memory and refuse signing vj if requested.
Due to the quorum intersection property, this guarantees the “at most one” se­
mantic in a static system.

This approach can be implemented in a dynamic system using the pseu­
docode from Algorithm 3 and the state transfer protocol from the DBLA im­
plementation (see Algorithm 1).

Using the dynamic version of this approach to certifying reconfiguration re­
quests allows capturing the notion of what is sometimes called “on­chain gov­
ernance”. The idea is that the participants of the system (in this case, the owners
of the replicas) decide which actions or updates to allow by the means of voting.
Every decision needs a quorum of signed votes to be considered valid and no
two conflicting decisions can be made.

1.6.3 Trusted administrators

A naive yet common approach to dynamic systems is to have a trusted adminis­
trator, who signs the reconfiguration requests. However, if the administrator’s
private key is lost, the system might lose liveness, and if it is compromised, the
system might lose even safety. A more viable approach is to have n administra­
tors and to require b+1 of them to sign every certificate, for some n and b such
that 0 ≤ b < n. In this case, the system will “survive” up to b keys being com­
promised and up to n− (b + 1) keys being lost. An interesting problem that is
not considered in this thesis is an algorithm to change the set of administrators.

1.6.4 Combining Access Control with other objects

There are at least two possible ways to combine the Access Control abstraction
with a reconfigurable object in a practical system.

The simplest, and, perhaps, the most practical approach is to embed two
instances of Dynamic Access Control directly into the structure of a reconfig­

40

VIV ConfLA HistLA

VIV
VH

VH

VIV

DObj

ConfDAC

ObjDAC

(a) Dynamic Access Control inside a reconfigurable ob­
ject.

RObj
VIVObjRAC

VIC
ConfRAC VIC

(b) Reconfigurable Access Control in combination with
another reconfigurable object.

Figure 1.7: Two possible ways to integrate the Access Control abstraction with other types
of objects. An arrow from an object A to another object B marked with VIV, (resp., VIC
or VH) indicates that A.VerifyInputValue (resp., A.VerifyInputConfig or A.VerifyHistory) is
implemented using B.VerifyOutputValue or B.VerifyCert.

urable object, as shown in Figure 1.7a. In this case, the replicas that execute the
code for the Access Control are the same replicas as the replicas that execute
the code of other dynamic objects in the implementation of this reconfigurable
object.

Alternatively, one can apply the transformation from Section 1.5 to the dy­
namic Access Control implementation described in this section to obtain a re­
configurable version of the Access Control abstraction. It then can be combined
with any other reconfigurable object in a structure depicted in Figure 1.7b. In
this case, the replicas of ConfRAC produce verifiable input configurations for
themselves and for two other objects.

1.7 Related work

Dynamic replicated systems with passive reconfiguration [17, 15, 46] do not
explicitly regulate arrivals and departures of replicas. Their consistency prop­
erties are ensured under strong assumptions on the churn rate. Except for the
recent work [46], churn­tolerant storage systems do not tolerate Byzantine fail­
ures. In contrast, active reconfiguration allows the clients to explicitly propose
configuration updates, e.g., sets of new replica arrivals and departures.

Early proposals of (actively) reconfigurable storage systems tolerating pro­
cess crashes, such as RAMBO [38] and reconfigurable Paxos [57], used con­
sensus (and, thus, assumed certain level of synchrony) to ensure that the clients
agree on the evolution of configurations. DynaStore [8] was the first asyn­
chronous reconfigurable storage: clients propose incremental additions or re­

41

movals to the system configuration. As the proposals commute, the processes
can resolve their disagreements without involving consensus.

The parsimonious speculative snapshot task [37] allows to resolve conflicts
between concurrent configuration updates in a storage system using instances of
commit­adopt [36]. The worst­case time complexity, in the number of message
delays, of reconfiguration was later reduced from O(n2) to O(n) [70], where n
is the number of concurrently proposed configuration updates.

SmartMerge [42] made an important step forward by treating reconfigura­
tion as an instance of abstract lattice agreement [34]. However, the algorithm
assumes an external (reliable) lattice agreement service which makes the sys­
tem not fully reconfigurable. The recently proposed reconfigurable lattice­
agreement abstraction [49] enables truly reconfigurable versions of a large
class of objects and constructions, including state­based CRDTs [66], atomic­
snapshot, max­register, conflict detector and commit­adopt. The reconfigura­
tion service described in this thesis can be used to derive Byzantine fault­tolerant
reconfigurable implementations of objects in the class.

Byzantine quorum systems [59] introduce abstractions for ensuring avail­
ability and consistency of shared data in asynchronous systems with Byzantine
faults. In particular, a dissemination quorum system ensures that every two quo­
rums have a correct process in common and that at least one quorum only con­
tains correct processes.

Dynamic Byzantine quorum systems [12] appear to be the first attempt to
implement a form of active reconfiguration in a Byzantine fault­tolerant data
service running on a static set of replicas, where clients can raise or lower the
resilience threshold. Dynamic Byzantine storage [61] allows a trusted admin­
istrator to issue ordered reconfiguration calls that might also change the set of
replicas. The administrator is also responsible for generating new private keys
for the replicas in each new configuration to anticipate the “I still work here”
attack [7]. In this thesis, an implementation of a Byzantine fault­tolerant recon­
figuration service that does not rely on this assumption is proposed.

Forward­secure signature schemes [18, 19, 23, 31, 60] were originally de­
signed to mitigate the consequences of key exposure: if the private key of an
agent is compromised, signatures made prior to the exposure (i.e., with smaller

42

timestamps) can still be trusted. In this thesis, a novel application of forward­
secure digital signatures is proposed: timestamps are associated with configu­
rations. Before a new configuration is installed, the protocol ensures that suffi­
ciently many correct processes update their private keys in prior configurations.
This approach prevents the “I still work here” and “slow reader” attacks. Unlike
previously proposed solutions [61], it does not rely on a global agreement on the
configuration sequence or a trusted administrator.

1.8 Discussions

Communication cost. In this thesis, no intention was made to provide the
optimal implementations of each object or to implement the most general ab­
stractions (such as generalized lattice agreement [34, 49]). Instead, the focus
was made on providing the minimal implementation for the minimal set of ab­
stractions to demonstrate the ideas and the general techniques for defining and
building reconfigurable services in the harsh world of asynchrony and Byzan­
tine failures. Therefore, the implementations proposed in this thesis leave plenty
of space for optimizations. Some directions for optimizations are discussed in
Section 1.5.3 and Appendix A.3.

Further research. In this thesis, a very strong model of the adversary is as­
sumed: no assumptions are made about correctness of replicas in superseded
configurations. This pessimistic approach leads to more complicated and ex­
pensive protocols. Moreover, an attempt was made to generalize the discussion
instead of focusing on creating a reconfigurable version of some particular ob­
ject. In [39], we considered a simpler yet, arguably, more realistic model, where
the adversary is not able to corrupt more than one third of participants even in su­
perseded configurations. We also simplified the task by focusing on Byzantine
reliable broadcast, which is a simpler problem compared to lattice agreement or
register emulation. As expected, the resulting algorithm is simpler and much
more efficient. As shown in [28], Byzantine reliable broadcast can be used as a
foundation for an efficient implementation of a cryptocurrency.

While the discussion in this thesis is kept as general as possible, potential

43

practical applications of asynchronous Byzantine fault­tolerant reconfiguration
is an interesting avenue for future research. As discussed in [28] and [39], a natu­
ral application is the implementation of permissioned cryptocurrencies. In [48],
we applied and extended the techniques presented in this thesis to implement a
permissionless proof­of­stake cryptocurrency, where anybody can participate in
the system simply by obtaining and holding any amount of the corresponding
asset.

Another application of Byzantine fault­tolerant reconfiguration is explored
by De Souza et al. in [29]. They applied forward­secure digital signatures in
a way similar to what is proposed in this thesis in order to implement account­
able reconfigurable Byzantine fault­tolerant objects, which can detect Byzantine
processes in case of a safety violation and automatically repair the system by ex­
cluding them. They considered a weaker model where clients are not subject to
Byzantine failures, which leads to a significantly simpler algorithm.

Open problems. One of the main hurdles that prevent widespread adoption of
asynchronous reconfiguration is that there is still no efficient “blackbox trans­
formation” of static algorithms into reconfigurable ones, even for crash fault­
tolerant systems. Although there are some repetitive patterns in the design of
reconfigurable systems, each algorithm still has to be adapted to the dynamic
setting individually. As a step in the direction of solving this issue, in this the­
sis, a generic framework for defining reconfigurable objects is proposed.

There is also no simple framework for proving correctness of dynamic and
reconfigurable algorithms. For some objects, the correctness of a static algo­
rithm might be proven within few sentences, while the rigorous proof of cor­
rectness of its dynamic counterpart might take several pages. Most notably, the
simple properties of Byzantine quorum systems [59] have no trivial counterparts
in dynamic systems.

Another issue that has not been addressed so far is scalability. In particular, it
would be interesting to devise algorithms that would efficiently adapt to “small”
configuration changes, while still supporting the option of completely changing
the set of replicas in a single reconfiguration request. In the model considered in
most papers on asynchronous reconfiguration, each reconfiguration is treated as

44

if it completely changes the set of replicas, which leads to an expensive quorum­
to­quorum communication pattern. This seems unnecessary for reconfiguration
requests involving only slight changes to the set of replicas.

45

2 Efficient Byzantine Fault­Tolerant Consensus

In this chapter, a new fast Byzantine consensus algorithm is proposed, accom­
panied by a lower bound that stipulates that the proposed algorithm has optimal
resilience. The main results presented in this chapter are accepted for publica­
tion in the proceedings of PODC 2021 [1]. The latest review of the paper is
available on arXiv [51].

The chapter is organized as follows. First, in Section 2.1, the model assump­
tions and the consensus problem are formalized. In Section 2.2, the proposed
fast Byzantine consensus protocol is described and is proven correct. Section 2.3
contains the new lower bound and the discussion on the applicability of the lower
bound from [62]. Finally, related work is discussed in Section 2.4.

2.1 Preliminaries

2.1.1 Model assumptions

A set Π = {p1, . . . , pn} of n processes is considered. Every process is assigned
with an algorithm (deterministic state machine) that it is expected to follow. A
process that deviates from its algorithm, by performing a step that is not pre­
scribed by the algorithm or prematurely stopping taking steps, is called Byzan­
tine.

It is assumed that the number of Byzantine processes in an execution of
the algorithm does not exceed parameter f . Sometimes, a subset of executions
in which up to t ≤ f processes are Byzantine is considered. Non­Byzantine
processes are called correct.

The processes communicate by sending messages across reliable (no loss,
no duplication, no creation) point­to­point communication channels. More pre­
cisely, if a correct process sends a message to a correct process, the message
is eventually received. The adversary may not create messages or modify mes­
sages in transit. The channels are authenticated: the sender of each received
message can be unambiguously identified.

Every process is assigned with a public/private key pair. Every process
knows the identifiers and public keys of every other processes. The adversary

46

is computationally bounded to be unable to break to compute private keys of
correct processes.

A partially synchronous system is assumed: there exists a known a priori
bound on message delays ∆ that holds eventually: there exists a moment in
time after which every message sent by a correct process to a correct process is
received within ∆ time units. This (unknown to the processes) time when the
bound starts to hold is called global stabilization time (GST). For brevity, the
time spent on local computations is neglected.

2.1.2 The consensus problem

Each process p ∈ Π is assigned with an input value xinp . At most once in any
execution, a correct process can decide on a value x by triggering the callback
DECIDE(x).

Any infinite execution of a consensus protocol must satisfy the following
conditions:

Liveness: Each correct process must eventually decide on some value;

Consistency: No two correct processes can decide on different values;

Validity: Two flavors of this property are considered:

Weak validity: If all processes are correct and propose the same value,
then only this value can be decided on;

Extended validity: If all processes are correct, then only a value pro­
posed by some process can be decided on.

Note that extended validity implies weak validity, but not vice versa (i.e., ex­
tended validity is strictly stronger than weak validity). Our algorithm solves
consensus with extended validity, while our matching lower bound holds even
for consensus with weak validity.

47

2.2 Algorithm

In this section, the new fast Byzantine consensus algorithm for the system of
n = 5f−1 processes is presented and is proven correct. Also, its generalization
for n = 3f + 2t− 1 processes is discussed.

The algorithm proceeds in numbered views. Each process maintains its cur­
rent view number, and each view is associated with a single leader process by
an agreed upon mapping leader : Z>0 → Π. For simplicity, let us assume that
leader(v) = p(v mod n)+1. When all correct processes have the same current view
number v, process leader(v) is said to be elected.

The processes execute a view synchronization protocol in the background.
No explicit implementation for it is provided in this thesis since any implemen­
tation from the literature is sufficient [24, 20, 63].

The view synchronization protocol must satisfy the following three proper­
ties:

• The view number of a correct process is never decreased;

• In any infinite execution, a correct leader is elected an infinite number of
times. In other words, for any point in the execution, there is a moment
in the future when a correct leader is elected;

• If a correct leader is elected after GST, no correct process will change its
view number for the time period of at least 5∆.

Initially, the view number of each process is 1. Hence, process leader(1) is
elected at the beginning of the execution. If leader(1) is correct and the net­
work is synchronous from the beginning of the execution (GST = 0), our pro­
tocol guarantees that all correct processes decide some value before any process
changes its view number.

The first leader begins with sending a PROPOSE message with its current deci­
sion estimate to all processes. If a process accepts the proposal, it sends an ACK
message to every other process. A process decides on the proposed value once
it receives ACK messages from a quorum (n − f) of processes. Therefore, as
long as the leader is correct and the correct processes do not change their views
prematurely, every correct process decides after just two communication steps.

48

When correct processes change their views, they engage in the view change
protocol, helping the newly elected leader to obtain a safe value to propose
equipped with a certificate that confirms that the value is safe. (A value is safe
in a view if no other value was or will ever be decided in a smaller view).

The view change protocol consists of two phases: first, the leader collects
votes from processes and makes a decision about which value is safe, and, sec­
ond, the leader asks 2f + 1 other processes to confirm with a digital signature
that they agree with the leader’s decision. This second phase, not typical for
other consensus protocols, is used to ensure that the certificate sizes do not grow
indefinitely in case of a long period of asynchrony.

Once the view change protocol is completed, the new leader runs the normal
case protocol: it sends a PROPOSE message to every process and waits for n− f

acknowledgments.
Below, the normal case execution and the view change protocol are de­

scribed in more detail.

2.2.1 Normal case

A value x is said to be safe in a view v if no value other that x can be decided in
a view v′ < v.

A view change protocol (described in more detail below) provides the new
leader with a value x̂ and a certificate σ̂ ensuring that x̂ is safe in the current
view v. The certificate can be independently verified by any process. In the
first view (v = 1), any value is safe (x̂ = xinleader(1)) and there is no need for such
a certificate (σ̂ = ⊥).

To propose a value in the normal case (illustrated in Figure 2.1a), the
leader p sends the message PROPOSE(x̂, v, σ̂, τ̂) to all processes, where τ̂ =

signp((PROPOSE, x̂, v)).
When a process receives the proposal for the first time in a given view and

ensures that σ̂ and τ̂ are valid, it sends an ACK message containing the proposed
value and a digital signature to every process. Once a process receives n − f

signed acknowledgments for the same pair (x̂, v), it decides on the proposed
value x̂.

49

p1

p2

p3

p4

PROPOSE ACK
(x̂, v, σ̂, τ̂) (x̂, v, ϕack)

(a) Normal case execution example. τ̂ =
signp((PROPOSE, x̂, v)), where p is the identifier of
the leader process that sends the PROPOSE message.
ϕack = signq((ACK, x̂, v)), where q is the identifier of
the process that sends the ACK message.

p1

p2

p3

p4

VOTE CERTREQ
(voteq, ϕvote) (x̂, votes) (ϕca)

CERTACK

(b) View change execution example.
ϕvote = signq((VOTE, voteq, v)) and ϕca =
signq((CERTACK, x̂, v)), where q is the identifier
of the process that sends the message.

Figure 2.1: Execution examples.

2.2.2 View change

Every process q locally maintains a variable voteq, an estimate of the value to
be decided, in the form (x, u, σ, τ), where x is a value, u is a view number, σ
is the certificate ensuring that x is safe in view u, and τ is a signature for the
tuple (PROPOSE, x, u) produced by the leader of view u. If voteq = (x, u, σ, τ),
process q is said to vote for “value x in view u”. Initially, the variable voteq
has special value nil. When a correct process receives a PROPOSE message from
the leader of its current view for the first time, the process updates its vote by
adopting the values from the PROPOSE message (before sending the ACK message
back to the leader). Note that once a correct replica changes its vote from nil to
something else, it never changes the vote back to nil. A vote is said to be valid
if either it is equal to nil or both σ and τ are valid with respect to x and u.

Whenever a correct process q changes its current view (let v be the new
view number), it sends the message VOTE(voteq, ϕvote) to the leader of view v,
where ϕvote = signq((VOTE, voteq, v)). When a correct replica finds itself to
be the leader of its current view v, unless v = 1, it executes the view change
protocol (illustrated in Figure 2.1b). First, it waits for n − f valid votes and
runs the selection algorithm to determine a safe value to propose (x̂). Then it
communicates with other processes to create the certificate σ̂.

Selection algorithm. Let votes be the set of all valid votes received by the
leader (with the ids and the signatures of the processes that sent these votes).

50

|votes| ≥ n − f . If all votes in votes are equal to nil, then the leader simply
selects its own input value (xinleader(v)).

Otherwise, let w be the highest view number contained in a valid vote. If
there is only one value x such that there is a valid vote (x,w, ∗, ∗) in votes, then
x is selected.

Let us now consider the case when there are two or more values with valid
votes in view w. As a correct leader issues at most one proposal in its view,
the only reason for two different valid votes m1 = (x1, w, σ1, τ1) and m2 =

(x2, w, σ2, τ2) to exist is that the leader q of view w is Byzantine (process q is
said to have equivocated). Tuple γ = (m1,m2) ca be treated as an undeniable
evidence of q’s misbehavior. As there are at most f faulty processes, the leader
can then wait for n − f votes not including q’s vote (i.e., the leader may need
to wait for exactly one more vote if |votes| = n − f and votes contains a vote
from q). After receiving this additional vote, it may happen that w is no longer
the highest view number contained in a valid vote. In this case, the selection
algorithm needs to be restarted.

Otherwise, if w remains the highest view number contained in a valid vote,
let votes′ denote the n − f valid votes from processes other than q. There are
two cases to be considered:

(1) If there is a set V ⊂ votes′ of 2f valid votes for a value x, then x is
selected;

(2) If no such value x is found, then any value is safe in view v. In this case,
the leader simply selects its own input value (xinleader(v)).

Certificate creation. Let x̂ be the value selected by the selection algorithm.
As is proven in Section 2.2.3, if the leader honestly follows the selection algo­
rithm as described above, the selected value x̂ will be safe in the current view
v. However, the leader also needs to create a certificate σ̂ that will prove to all
other processes that x̂ is safe.

The naive way to do so is to simply let σ̂ be the set of all valid votes received
by the leader. Any process will be able to verify the authenticity of the votes
(by checking the digital signatures) and that the leader followed the selection

51

algorithm correctly (by simulating the selection process locally on the given set
of votes).

However, themajor problemwith this solution is that the certificate sizeswill
growwithout a limit in case of a long period of asynchrony. Recall that each vote
contains a certificate. If each certificate σ̂ consisted ofn−f votes, then each vote
would contain a certificate of its own, which, in turn, would consist ofn−f votes
cast in an earlier view, and so on. If this naive approach is implemented carefully,
the certificate size (and, hence, the certificate verification time) will be linear
with respect to the current view number. While it may be sufficient for some
applications (e.g., if long periods of asynchrony are assumed to never happen),
a solution with bounded certificate size would be much more appealing.

In order to compress the certificate, an additional round­trip is added to the
view change protocol. The leader sends the votes alongside the selected value x̂
to at least 2f + 1 different processes and waits for f + 1 signed confirmations.
The certificate σ̂ is the set of f+1 signatures from different replicas for the tuple
(CERTACK, x̂, v). Intuitively, since there are at most f Byzantine processes in
total, it is sufficient to present signatures from f+1 replicas to prove that at least
one correct replica verified that the leader performed the selection algorithm
correctly and, hence, that x̂ is safe in view v. As a result, the size of a protocol
message does not depend on the view number.

2.2.3 Proof of consistency

It is easy to see that the protocol satisfies the liveness property of consensus:
once a correct leader is elected after GST, there is nothing to stop it from driv­
ing the protocol to termination. The extended validity property is immediate.
Hence, in this section, only consistency is discussed in detail. It is shown that a
correct leader always chooses a safe value in the view change protocol.

Our proofs are based on the following three quorum intersection properties
(recall that n = 5f − 1):

(QI1) Simple quorum intersection: any two sets of n−f processes intersect in
at least one correct process. This follows from the pigeonhole principle.
It is sufficient to verify that 2(n− f)−n ≥ f +1, which is equivalent to

52

n ≥ 3f + 1 and holds for n = 5f − 1 assuming that f ≥ 1;

(QI2) Equivocation quorum intersection #1: if Q1 ⊂ Π such that |Q1| =
n − f and Q2 ⊂ Π such that |Q2| = n − f and there are at most f −
1 Byzantine processes in Q2, then Q1 ∩ Q2 contains at least 2f correct
processes. Again, by the pigeonhole principle, it is sufficient to verify
that 2(n− f)− n ≥ (f − 1) + 2f , which is equivalent to n ≥ 5f − 1;

(QI3) Equivocation quorum intersection #2: ifQ1 ⊂ Π such that |Q1| = n−f
and Q2 ⊂ Π such that |Q2| = 2f and there are at most f − 1 Byzantine
processes in Q2, then Q1 ∩ Q2 contains at least one correct process. It is
sufficient to verify that (n− f) + 2f − n ≥ (f − 1) + 1, which holds for
any values of n and f , n ≥ 2f .

First, let us address the corner case when the leader receives no valid votes
other than nil.

Lemma 2.1. If the leader of view v receives nil from n − f different processes
during the view change, then any value is safe in v.

Proof. Suppose, for contradiction, that at some point of the execution some
value y is decided in a view w′ smaller than v. Consider the set Q1 ⊂ Π of
n− f processes that acknowledged value y in w′. Consider also the setQ2 ⊂ Π

of n − f processes that sent nil to the leader of view v. By property (QI1),
Q1 ∩Q2 contains at least one correct process.

A correct process only sends messages associated with its current view and
it never decreases its current view number. Hence, it cannot send the vote in
view v before sending the acknowledgment in view w′. If the correct process
acknowledged value y in w′ before sending the vote to the leader of view v, the
vote would have not been nil. A contradiction.

For the rest of this section, let v denote a view number and let w denote the
highest view number contained in a valid vote received by the leader of view v

during the view change protocol.

Lemma 2.2. No value was or will ever be decided in any view w′ such that
w < w′ < v.

53

Proof. Suppose, for contradiction, that at some point of the execution some
other value y is decided in w′(w < w′ < v). Let Q1 ⊂ Π be the set of n − f

processes that acknowledged value y in w′ and let Q2 ⊂ Π be the set of n − f

processes that sent their votes to the leader of view v. By property (QI1),Q1∩Q2

contains at least one correct process.
A correct process only sends messages associated with its current view and

it never decreases its current view number. Hence, it cannot send the vote in
view v before sending the acknowledgment in view w′. If the correct process
acknowledged value y in w′ before sending the vote to the leader of view v, the
vote would have contained a view number at least as large asw′. This contradicts
the maximality of w.

Lemma 2.3. If there is only one value x such that there is a valid vote
(x,w, σ, τ), then x is safe in view v.

Proof. Suppose, for contradiction, that at some point of the execution some
other value y is decided in a view w′ smaller than v. By the validity of cer­
tificate σ, w′ cannot be smaller than w. By Lemma 2.2, w′ cannot be larger than
w. Let us consider the remaining case (w′ = w).

The proof is mostly identical to the proofs of Lemmas 2.1 and 2.2. Never­
theless, it is repeated here for completeness.

Let Q1 ⊂ Π be the set of n − f processes that acknowledged value y in w.
Let Q2 ⊂ Π be the set of n − f processes that sent their votes to the leader of
view v. By (QI1), Q1 ∩Q2 contains at least one correct process.

A correct process only sends messages associated with its current view and
it never decreases its current view number. Hence, it cannot send the vote in
view v before sending the acknowledgment in view w. If the correct process
acknowledged value y in w before sending the vote to the leader of view v, the
vote would have contained either a view number larger than w (which contra­
dicts the maximality of w) or the value y (which contradicts the uniqueness of
x).

Lemma 2.4. If the leader detects an equivocation by process q and receives at
least 2f valid votes for a value x in view w from processes other than q, then x

is safe in view v.

54

Proof. Suppose, for contradiction, that at some point of the execution some
other value (y) is decided in a view w′ smaller than v. By the validity of the
certificates attached to the votes cast for value x, w′ cannot be smaller than w.
By Lemma 2.2, w′ cannot be larger than w. Let us consider the remaining case
(w′ = w).

Let Q1 ⊂ Π be the set of n − f processes that acknowledged value y in w.
Let Q2 ⊂ Π be the set of 2f processes that cast votes for value x in view w.
Since q /∈ Q2 and q is provably Byzantine, there are at most f − 1 Byzantine
processes in Q2. By (QI3), there is at least one correct process in Q1 ∩ Q2. A
correct process only adopts a vote before acknowledging the value from the vote
and it never acknowledges 2 different values in the same view. Hence, y = x.
A contradiction.

Lemma2.5. If the leader detects an equivocation by process q and do not receive
2f or more valid votes for any value x in view w from processes other than q,
then any value is safe in v.

Proof. Suppose, for contradiction, that at some point of the execution some
value y is decided in a view w′ smaller than v. Let m1 = (y1, w, σ1, τ1) and
m2 = (y2, w, σ2, τ2) be the two valid votes such that y1 ̸= y2. By the validity of
σ1, no value other than y1 was or will ever be decided in a view smaller than w.
The same applies for value y2. Hence, no value was or will ever be decided in
a view smaller than w (i.e., w′ is not smaller than w). By Lemma 2.2, w′ is not
larger than w.

Let us consider the remaining case (w′ = w). Recall that the leader collects
n − f votes from processes other than q. By (QI2), the leader would have re­
ceived at least 2f votes for the value y in view w or at least one vote for a value
in a view larger than w.

2.2.4 Generalized version

By applying the techniques from prior studies on fast Byzantine consensus [47,
62, 4], one can obtain a generalized version of our algorithm. The protocol will
tolerate f Byzantine failures and will be able to decide a value in the common
case after just two communication steps as long as the actual number of faults

55

does not exceed threshold t (t ≤ f). The required number of processes will be
max{3f+2t−1, 3f+1} (i.e., n = 3f+2t−1 if t ≥ 1 and n = 3f+1 if t = 0).
Note that, when t = 1, one obtains a Byzantine consensus protocol with optimal
resilience (n = 3f+2t−1 =

[t=1]
3f+1) that is able to decide a value with optimal

latency in the common case in presence of a single Byzantine fault. To the best of
our knowledge, in all prior algorithms with optimal resilience (n = 3f +1), the
optimistic fast path could make progress only when all processes were correct.

2.3 Lower bound

In this section, it is shown that any f ­resilient Byzantine consensus protocol that
terminates within two message delays when the number of actual failures does
not exceed t (such a protocol is called two­step) requires at least 3f + 2t − 1

processes.
It is then shown in Section 2.3.3 that the lower bound of n = 3f + 2t +

1 processes (claimed by Martin and Alvisi [62]) holds for a special class of
protocols assuming that the processes that propose values (called proposers)
are disjoint from the processes responsible for replicating the proposed values
(called acceptors).

2.3.1 Preliminaries

Let V be the domain of the consensus protocol (i.e., the set of possible input
values). An initial configuration is a function I : Π→ V that maps processes to
their input values. Note that although I maps all processes to some input values,
Byzantine processes can pretend as if they have different inputs.

An execution of the protocol is the tuple (I,B,S), where I is an initial con­
figuration, B is the set of Byzantine processes (|B| ≤ f), and S is a totally
ordered sequence of steps taken by every process with timestamps (consisting
of “send message”, “receive message”, and “timer elapsed” events). Multiple
events may have the same timestamp, but they, nevertheless, must be arranged
in a total order. If ρ = (I,B,S), execution ρ is said to start from initial config­
uration I .

56

In the proof of this lower bound, all processes are assumed to have access
to perfectly synchronized local clocks that show exact time elapsed since the
beginning of the execution. Note that this only strengthens the lower bound. If
there is no algorithm implementing fast Byzantine consensus with 3f + 2t− 2

or fewer processes in the model with synchronized clocks, then clearly there is
no such algorithm without synchronized clocks.

In all executions that are considered in the proof, the delivery of a message
takes at least∆ time units. Events that happen during the half­open time interval
[0,∆) are referred to as the first round. Events that happen during the half­open
time interval [∆, 2∆) are referred to as the second round, and so on. Hence, a
message sent in round i may only be delivered in round i + 1 or later. State of
a process “after the i­th round” is its state after all events with timestamp i∆ or
smaller and before any events with higher timestamps.

Lemma 2.6. Actions taken by correct processes during the first round depend
exclusively on their inputs (i.e., on the initial configuration).

Proof. Indeed, in the executions that are considered, during the first round, no
messages can be delivered. Messages that are sent at the time 0 are delivered
not earlier than at the time ∆, which belongs to the second round. As only
deterministic algorithms are considered, all actions taken by the processes in
the first round are based on their input values.

Thanks to the liveness property of consensus, it is sufficient to consider only
finite executions in which every correct process decides on some value at some
point. Moreover, by the consistency property of consensus, all correct processes
have to decide the same value. Let us call this value the consensus value of an
execution and denote it with c(ρ), where ρ is an execution.

Given an execution ρ and a process p, the decision view of p in ρ is the view
of p at themoment when it triggers the DECIDE callback. The view consists of the
messages p received (ordered andwith the precise time of delivery) together with
the state of p in the initial configuration of ρ. Note that the messages received
by p after it triggers the callback are not reflected in the decision view.

Let ρ1 and ρ2 be two executions, and let p be a process which is correct in
ρ1 and ρ2. Execution ρ1 is similar to execution ρ2 with respect to p, denoted as

57

ρ1
p∼ ρ2, if the decision view of p in ρ1 is the same as the decision view of p in ρ2.

If P is a set of processes, ρ1
P∼ ρ2 is used as a shorthand for ∀p ∈ P : ρ1

p∼ ρ2.

Lemma 2.7. If there is a correct process p ∈ Π such that ρ1
p∼ ρ2, then c(ρ1) =

c(ρ2).

Proof. Since only executions where all correct processes decide some value are
considered, in executions ρ1 and ρ2, process p had to decide values c(ρ1) and
c(ρ2) respectively. However, since, at the moment of the decision, process
p is in the same state in both executions and only deterministic processes are
considered, p has to make identical decisions in the two executions. Hence,
c(ρ1) = c(ρ2).

Execution ρ = (I,B,S) is called T ­faulty two­step execution, where T ⊂ Π

and |T | = t, iff:

1. All processes in Π \ T are correct and all processes in T are Byzantine
(i.e., B = T);

2. Local computation is instantaneous. In particular, if one process receives
a messages from another process at the time t and sends a reply without
waiting, the reply will be sent also at time t and will arrive at the time
t+∆;

3. Processes in T honestly follow the protocol during the first round and do
not take any actions in later rounds. In particular, they do not send any
messages at the time 2∆ or later;

4. Delivery of each message between each pair of processes takes precisely
∆ time units;

5. Every correct process makes a decision not later than at the time 2∆.

The following lemma explains how the weak validity property of consensus
dictates the output values of T ­faulty two­step executions.

Lemma2.8. For any consensus protocol with weak validity, if all processes have
the same input value x (∀p : I(p) = x), for any T ­faulty two­step execution ρ

starting from I , the consensus value c(ρ) = x.

58

Proof. Let T be the moment in time such that, in execution ρ, by that moment,
all correct processes have invoked the DECIDE callback. Let ρ′ be an execution
identical to ρ with the exception that processes in T are not Byzantine, but just
slow. The messages they send after the first round do not reach other processes
until after the moment T . The processes in Π \ T have no way to distinguish ρ′

from ρ until they receive the delayedmessages, which happens already after they
invoke the DECIDE callback. Hence, ρ′ Π\T∼ ρ and, by Lemma 2.7, c(ρ′) = c(ρ).
By the weak validity property of the consensus protocol, if all processes have x
as their input value, then c(ρ′) = x.

Protocol P is a two­step consensus protocol if it satisfies the following con­
ditions:

1. P is a consensus protocol with weak validity, as defined in Section 1.1;

2. ∃M ⊂ Π such that |M| ≥ 2t+1 and ∀I – initial configuration: ∀T ⊂M
such that |T | = t: there is a T ­faulty two­step execution starting from I .

In other words, if all Byzantine processes belong to a known set of “suspects”
M and fail by simply crashing at the moment ∆, local computation is immedi­
ate, and the network is synchronous, the algorithm must be able to make sure
that all processes decide some value after just 2 steps. Otherwise, when the
environment is not so gracious (e.g., the network is not synchronous from the
beginning or some processes in Π \M are Byzantine), the protocol is allowed
to terminate after more than 2 steps. Intuitively, the optimistic fast path of the
protocol can rely on the correctness of up to n− (2t+ 1) “leaders”.

As an example, let us see that the protocol proposed in this thesis is a two­
step consensus protocol according to this definition. Suppose that there are at
least 3f+2t−1 processes and f ≥ 1. Recall that leader(1) is the leader for view
1. Let p = leader(1). LetM = Π\{p}. Then, for any initial configuration and
any T with |T | = t, the following T ­faulty two­step execution exists:

1. p proposes its input value x = xinp at time 0 with the message
PROPOSE(x, 1,⊥, τ̂);

2. The other processes, including those in T , honestly follow the protocol
and do nothing during the first round;

59

3. At time∆, all processes receive the propose message. Among them, 3f+
t−1 processes are correct (including the leader p), and they respond with
an acknowledgment ACK(x, 1, ϕack);

4. At time 2∆, all the correct processes receive all the ACK messages and
decide via DECIDE(x).

2.3.2 Optimality of the proposed algorithm

Process p ∈ Π is said to be influential if there are two initial configurations (I
and I ′) such that ∀q ̸= p : I(q) = I ′(q) and two non­intersecting sets of suspects
not including p of size t (T , T ′ ⊂ M \ {p}, |T | = |T ′| = t, and T ∩ T ′ = ∅)
such that there are a T ­faulty execution ρ, and a T ′­faulty execution ρ′ with
different consensus values (c(ρ) ̸= c(ρ′)).

Intuitively, a process is influential if its input value under certain circum­
stances can affect the outcome of the fast path of the protocol. In Theorem 2.11,
it is proven that, if the number of processes is smaller than 3f + 2t − 1, an
influential process can use its power to force disagreement.

Lemma 2.9. For any two­step consensus protocol, there is at least one influen­
tial process.

Proof. ∀i ∈ {0, . . . , n}: let Ii be the initial configuration in which the first i
processes have the input value 1 and the remaining processes have the input
value 0. In particular, in I0, all processes have the input value 0, and, in In,
all processes have the input value 1. By the definition of a two­step consensus
protocol, ∀i : ∀T ⊂ M such that |T | = t: there must be a T ­faulty two­step
execution starting from Ii. Moreover, by Lemma 2.8, ∀T : all T ­faulty two­step
executions starting from I0 (resp., In) have the consensus value 0 (resp., 1). Let
pred(i) be the predicate “there is a set T1 ⊂ (M\ {pi}) such that there is a T1­
faulty two­step execution with consensus value 1 starting from Ii”. We know
that pred(0) = false and pred(n) = true. Hence, as we consider all number
from 0 to n, predmust change its value from false to true at least once. Let j be
such a number that pred(j − 1) = false and pred(j) = true, j ≥ 1. Let T1 be
the set of suspects defined in the predicate. By the definition of T1, p /∈ T1.

60

It follows that there is a minimum number j ≥ 1 such that there is a set T1
such that there is a T1­faulty two­step execution with consensus value 1 starting
from Ij.

Note that pj /∈ T1. Indeed, if pj ∈ T1, then the input of pj would not be able
to affect the consensus value of any T1­faulty two­step execution (pj simply
would not participate in that execution). In that case, there would be a T1­faulty
two­step execution with consensus value 1 starting from Ij−1, which contradicts
the choice of j.

Let T0 ⊆M be a set of suspect such that |T0| = t, pj /∈ T0, and T0∩T1 = ∅.
Such a set exists because |M| = 2t+1. By the definition of j, all T0­faulty two­
step executions starting from initial configuration Ij−1 have consensus value 0,
and, by the definition of a two­step consensus protocol, there is at least one such
execution.

It can be seen that pj is an influential process. Indeed, Ij−1 and Ij differ only
in the input of process pj, ρ0 and ρ1 are T0­ and T1­faulty executions starting from
Ij−1 and Ij respectively, T0 ∩ T1 = ∅, pj /∈ (T0 ∪ T1), and c(ρ0) ̸= c(ρ1).

Let us prove that 3f + 2t− 1 is optimal in the special case when t = 1.

Theorem 2.10. There is no two­step consensus protocol (assuming weak valid­
ity) with f ≥ 1 and t = 1 that can be executed on 3f + 2t− 2 = 3f processes.

Proof. This is a special case of the more general lower bound [65] that states
that any Byzantine consensus protocol in partially synchronous model requires
at least 3f + 1 processes.

Theorem 2.11. There is no two­step consensus protocol (assuming weak valid­
ity) with f ≥ t ≥ 2 that can be executed on 3f + 2t− 2 processes.

Proof. Suppose, for contradiction, that there is such a two­step consensus pro­
tocol that can be executed on a set Π of 3f + 2t− 2 processes (f ≥ t ≥ 2). By
Lemma 2.9, there is an influential process p, two initial configurations (I ′ and I ′′)
that differ only in the input of process p, two sets of suspects (T ′, T ′′ ⊂ Π\{p},
|T ′| = |T ′′| = t, and T ′ ∩ T ′′ = ∅), and two executions: a T ′­faulty execu­
tion ρ′ starting from I ′ and a T ′′­faulty execution ρ′′ starting from I ′′, such that

61

{p} P1 P2 P3 P4 P5

ρ1

ρ2

ρ3

ρ4

ρ5

s1

s1

s1

s1

t2

s2

s2

s2

t3

t3

s3

s3

t4

t4

t4

s4

t5

t5

t5

t5

similar for P3

similar for P1, P4, and P5

similar for P1, P2, and P5

similar for P3

size 1 t f−1 f−1 f−1 t

Figure 2.2: A visualization for the proof setup of the lower bound when f ≥ t ≥ 2. The rows
are executions and the columns are groups (subsets) of the processes. A group that is byzantine
will be denoted with . The si and ti correspond to the state of the process after the first round.

c(ρ′) ̸= c(ρ′′). Without loss of generality, let us assume that c(ρ′) = 0 and
c(ρ′′) = 1.

The set Π \ {p} is partitioned into five groups: P1, . . . , P5, where P1 = T ′′,
P5 = T ′, and |P2| = |P3| = |P4| = f−1. The partition is depicted in Figure 2.2.
Note that |P1|+ . . .+ |P5|+ |{p}| = 2t+ 3(f − 1) + 1 = 3f + 2t− 2 = |Π|.

Five executions are constructed, ρ1 through ρ5 (ρ1 = ρ′′ and ρ5 = ρ′), such
that for all i ∈ {1, . . . , 5}, group Pi is Byzantine in ρi, and for all j ̸= i, group
Pj is correct in ρi. The influential process p is Byzantine for ρ2, ρ3, ρ4 and is
correct for ρ1 and ρ5; hence there are exactly f Byzantine actors for each exe­
cution as |P2| = |P3| = |P4| = f − 1. The goal is to show that each pair of
adjacent executions will be similar for at least one correct process set, who will
then decide the same value. This would naturally lead to a contradiction, since
Lemma 2.7 implies that 0 = c(ρ5) = · · · = c(ρ1) = 1.

We can assume that p can send one of two types of messages in the first
round: 0 or 1, where sending 0 causes execution ρ5 to happen and sending 1

causes execution ρ1 to happen. Recall that the initial configurations of ρ1 and ρ5
differ only in the input value of p. By Lemma 2.6, all actions taken by correct
processes other than p during the first round will be the same in all executions.
Additionally, for all i, in execution ρi, the processes in the Byzantine group Pi

will act as if they are correct. Hence, the only process that acts differently in
different executions during the first round is p. For each execution ρi, let p send
0 to the processes in Pj for j < i and send 1 to the processes in Pj for j > i

(processes in Pi are Byzantine in ρi, so it does not matter what is sent to them).

62

P2

P3

P4

P5

P1

{p}

s1

t5

s3

r1

r2

r5

r4

time 0 ∆ 2∆

s2

(a) Execution ρ4.

P2

P3

P4

P5

P1

{p}

s1

t5

t4

r1

r2

r5

r4

s2

…

…

…

…

Ttime 0 ∆ 2∆

(b) Execution ρ3.

P2

P3

P4

P5

P1

{p}

s1

t5

t4

t3

r1

r2

r5

r4

time 0 ∆ 2∆

(c) Execution ρ2.

Figure 2.3: Executions ρ2, ρ3, and ρ4. Solid blue lines and dashed green arrows represent
messages identical to messages sent in ρ5 and ρ1 respectively. Green tick symbol means that all
processes in the group decide a value. Messages from all processes other than p in the first round
are identical in all executions and omitted on the picture for clarity. Messages sent in the second
round to process p in both executions and to group P3 in ρ3 are also omitted as these processes
are Byzantine and do not take any further steps in these executions after the second round. si and
ti represent states of correct processes after the first round in ρ5 and ρ1 respectively. ri represent
states of correct processes after the second round in ρ3.

63

Note that for i = 1 or 5, this is equivalent to p honestly following the protocol
for some initial configuration (i.e. sending the same message to all processes).
For the other i, p is a Byzantine process that is role­playing a different initial
configuration for each of the two nontrivial partitions of the other processes.
Thus, after the first round, each group Pi can be assumed to take just one of
two states si or ti, where si is consistent with ρ5 and ti is consistent with ρ1,
solely dependent on which of the two messages p sends to them. See Figures 2.2
and 2.3. Let us see how ρ2, ρ3, and ρ4 are constructed.

Execution ρ4, second round (the actions of subsequent rounds in ρ4 will be
specified at a later time):

• Recall that {p} ∪ P4 are Byzantine. They ({p} ∪ P4) will send messages
to group P3 in exactly the same fashion as in ρ5. For other processes, P4

will act in exactly the same fashion as in ρ1 (i.e., as if they are correct and
were in the state t5 after the first round). Process p will simply remain
silent for the rest of the execution;

• P5 is now honest, unlike it was in ρ5. However, the messages from P5

to P3 are delayed and do not reach the recipients until after the time 2∆.
Other messages sent by P5 in the second round are delivered in a timely
fashion;

• P3 is still honest but slow. Its messages will not be received by any other
process until a finite moment in time T that will be specified later;

• All messages sent to P3 by processes other than P5 in the second round
will be delivered at the exact same times and in the exact same order as
in ρ5.

Let us now look from the P3’s perspective. During the time interval [0, 2∆],
P3 will not be able to distinguish this execution from ρ5, since it receives the
exact same messages from {p}, P1, P2, P4, which all have the same state as in
ρ5 after the first round (or inP4’s case can fake the same state), and hears nothing
from P5 in both executions. Thus, by the time 2∆, processes in P3 will achieve

64

exactly the same state as in ρ5 and will decide 0 as well (a reminder that this
decision is done in silence, as P3’s messages will not be received by anyone else
until the time T). Therefore, ρ5

P3∼ ρ4.

Execution ρ2, second round: Recall that {p} ∪ P2 are Byzantine. ρ2 is con­
structed similarly to ρ4, but with the roles switched by both the symmetries
ρi ⇔ ρ6−i and Pi ⇔ P6−i. In particular, {p} ∪ P2 will send messages to group
P3 in exactly the same fashion as in ρ1. By a symmetric argument as above, it
can be concluded that by the time 2∆, processes in P3 will achieve exactly the
same state as in ρ1 and will decide 1 as well. Therefore, ρ1

P3∼ ρ2.

Execution ρ3: First, let us look at what happens during the second round:

• In ρ2, the Byzantine P2 sends the same messages to P1, P4, and P5 as its
honest version does in ρ4;

• In ρ4, the Byzantine P4 sends the same messages to P1, P2, and P5 as its
honest version does in ρ2;

• P3 is slow in both, so everybody has the same interaction with P3;

• p is Byzantine, so it is possible for us to assume that p sends the same
messages to each Pi during the two executions.

The important point is this: after the second round, it can be assumed that
every non­P3 process has the same state (or if Byzantine in one of them, can
act as if it were in the same state) in the two executions ρ2 and ρ4. More
precisely, both executions be continued (as long as P3’s messages do not reach
anyone) as if the processes in P1 ∪P2 ∪P4 ∪P5 were the only correct processes
starting from some state r after completing their second step.

Let us now construct ρ3. Recall that {p}∪P3 are Byzantine. Let all processes
in P3 crash permanently at the end of the first round. The key idea with ρ3 is
that by the discussion we just had, it can be assumed that after the second round
its (honest) processes P1 ∪ P2 ∪ P4 ∪ P5 are in the same group state c as their
counterparts in ρ2 and ρ4. Since there are only f Byzantine processes total, by

65

the liveness property of consensus, there must exist some execution that obtains
consensus at some moment T . Let this execution be ρ3.

Executions ρ2 and ρ4, later rounds: We are now finally ready to complete
executions ρ2 and ρ4. Since they are symmetric, let us start by looking at ρ4.
It is specified what happens to ρ4 up through the second round. Now, for the
future rounds, emulate ρ3 until the moment T , keeping P3 silent. This execution
is identical to ρ3, so all the correct processes (in particular, all processes in P1)
will decide. This means ρ4

P1∼ ρ3. By a symmetric argument, ρ2
P5∼ ρ3. Hence,

each adjacent pair of executions is similar to some processes, which leads to a
contradiction.

2.3.3 Optimality of FaB Paxos

While n = 3f + 2t + 1 is not optimal for fast Byzantine consensus algorithms
in general, it is optimal for a special class of Paxos­like algorithms that separate
proposers from acceptors. In Paxos [56], one of the first crash fault­tolerant
solutions for the consensus problem, Leslie Lamport suggested a model with
three distinct types of processes: proposers, acceptors, and learners. Proposers
are “leaders” and they are responsible for choosing a safe value and sending it
to acceptors. Acceptors store the proposed values and help the new leader to
choose a safe value in case previous leader crashes. Finally, learners are the
processes that trigger the DECIDE callback and use the decided value (e.g., they
can execute replicated state machine commands). In this model, the consensus
problem requires all learners to decide the same value. The Byzantine version
of Paxos [53] requires presence of at least one correct proposer and n = 3f + 1

acceptors, where f is the possible number of Byzantine faults among acceptors.
In the proposed algorithm, when a correct leader (proposer) sees that some

prior leader equivocated, it uses this fact to exclude one acceptor from consider­
ation as it is provably Byzantine. This trick only works when the set of proposers
is a subset of the set of acceptors. Moreover, this trick seems to be crucial for
achieving the optimal resilience (n = max{3f + 2t − 1, 3f + 1}). When the
set of proposers is disjoint from the set of acceptors, or even if there is just one
proposer that is not an acceptor, it can be shown that n = 3f +2t+1 is optimal.

66

In order to obtain the n = 3f + 2t + 1 lower bound for the model where
proposers are separated from acceptors, we need to make just two minor mod­
ifications to our proof of theorem 2.11. First of all, the influential process p
is no longer an acceptor. Hence, we are left with only 5 groups of acceptors
(P1, . . . , P5) instead of 6 ({p}, P1, . . . , P5). Second, the groups of acceptors
P2, P3, and P4 can now be of size f instead of f − 1 (since p is no longer
counted towards the quota of f Byzantine acceptors). After these two mod­
ifications, the proof shows that there is no two­step consensus protocol with
n = |P1|+ · · ·+ |P5| = 3f + 2t or fewer acceptors.

2.4 Related work

Kursawe [47] was the first to implement a fast (two­step) Byzantine consensus
protocol. The protocol is able to run with n = 3f + 1 processes, but it is able
to commit in two steps only when all n processes follow the protocol and the
network is synchronous. Otherwise, it falls back to a randomized asynchronous
consensus protocol.

Martin and Alvisi [62] present FaB Paxos–a fast Byzantine consensus pro­
tocol with n = 5f + 1. Moreover, they present a parameterized version of the
protocol: it runs on n = 3f + 2t + 1 processes (t ≤ f), tolerates f Byzantine
failures, and is able to commit after just two steps in the common case when
the leader is correct, the network is synchronous, and at most t processes are
Byzantine. In the same paper, the authors claim that n = 3f + 2t + 1 is the
optimal resilience for a fast Byzantine consensus protocol. In this thesis, it is
shown that this lower bound only applies to the class of protocols that separate
processes that execute the protocol (acceptors) from the process that propose
values (proposers).

Bosco [68] is a Byzantine agreement that is able to commit values after just
one communication step when there is no contention (i.e., when all processes
propose the same value). In order to tolerate f failures, the algorithm needs
5f + 1 or 7f + 1 processes, depending on the desired validity property.

Zyzzyva [45], UpRight [27], and SBFT [40] are practical systems that build
upon the ideas from FaB Paxos to provide optimistic fast path. Zyzzyva [45]

67

and UpRight [27] aim to replace crash fault­tolerant solutions in datacenters.
The evaluations in these papers demonstrate that practical systems based on fast
Byzantine consensus protocols can achieve performance comparable with crash
fault­tolerant solutions while providing additional robustness of Byzantine fault­
tolerance. In [40], Gueta et al. explore the applications of fast Byzantine consen­
sus to permissioned blockchain. Due to the high number of processes usually
involved in such protocols, the results of this thesis are less relevant for this
setting.

In [3] and [4], Abraham et al. demonstrate and fix some mistakes in FaB
Paxos [62] and Zyzzyva [45]. Moreover, they combine the ideas from the two
algorithm into a new one, called Zelma. This algorithm lies at the core of the
SBFT protocol [40].

In [32], the authors claim that their protocol, called hBFT, achieves the two­
step latency despite f Byzantine failures with only 3f+1 processes (as opposed
to 5f−1 required by the proposed lower bound). However, in a later paper [67],
it was shown that hBFT fails to provide the consistency property of consensus.

In a concurrent work [6], Abraham et al. present a number of upper and lower
bounds on the latency and resilience of the so­called “Byzantine broadcast”
problem. In particular, they show that the problem of partially­synchronous val­
idated Byzantine broadcast is solvable within 2 message delays iff n ≥ 5f − 1.
The problem that they consider is similar to leader­based consensus with exter­
nal validity. The results for the partially­synchronous systems are very similar
to the results presented in this thesis and are based on the same ideas. In a
complementary note [5], they present a practical Byzantine fault­tolerant state
machine replication protocol based on these ideas. Despite the similarities, the
lower bound provided in Section 2.3 of this thesis is more general than the one
presented in [6] as it is not limited to leader­based algorithms and encompasses
double­threshold algorithms.

68

Conclusion

In this work, two important problems in Byzantine fault­tolerant distributed
computing were addressed: asynchronous reconfiguration and resilience of fast
partially­synchronous consensus. For the first problem, there were no known
solutions prior to this work. For the second problem, a new upper bound was
proposed and an oversight in the lower bound was fixed.

69

References

[1] List of accepted papers, 2021. URL: https://www.podc.org/
podc2021/list-of-accepted-papers/.

[2] List of ethereum client implementations, 2021. URL: https:
//ethereum.org/en/developers/docs/nodes-and-clients/
#clients.

[3] Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo Alvisi, Rama Kotla,
and Jean­Philippe Martin. Revisiting fast practical byzantine fault toler­
ance. arXiv preprint arXiv:1712.01367, 2017.

[4] Ittai Abraham, Guy Gueta, Dahlia Malkhi, and Jean­Philippe Martin. Re­
visiting fast practical byzantine fault tolerance: Thelma, velma, and zelma.
arXiv preprint arXiv:1801.10022, 2018.

[5] Ittai Abraham, Kartik Nayak, Ling Ren, and ZhuolunXiang. Fast validated
byzantine broadcast. arXiv preprint arXiv:2102.07932, 2021.

[6] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Good­case
latency of byzantine broadcast: a complete categorization. arXiv preprint
arXiv:2102.07240, 2021.

[7] Marcos K Aguilera, Idit Keidar, Dahlia Malkhi, Jean­Philippe Martin,
Alexander Shraer, et al. Reconfiguring replicated atomic storage: A tu­
torial. Bulletin of the EATCS, (102):84–108, 2010.

[8] Marcos Kawazoe Aguilera, Idit Keidar, Dahlia Malkhi, and Alexander
Shraer. Dynamic atomic storage without consensus. J. ACM, 58(2):7:1–
7:32, 2011.

[9] Marcos Kawazoe Aguilera and Sam Toueg. A simple bivalency proof that
t­resilient consensus requires t+ 1 rounds. Information Processing Letters,
71(3­4):155–158, 1999.

70

https://www.podc.org/podc2021/list-of-accepted-papers/
https://www.podc.org/podc2021/list-of-accepted-papers/
https://ethereum.org/en/developers/docs/nodes-and-clients/#clients
https://ethereum.org/en/developers/docs/nodes-and-clients/#clients
https://ethereum.org/en/developers/docs/nodes-and-clients/#clients

[10] Eduardo Alchieri, Alysson Bessani, Fabíola Greve, and Joni
da Silva Fraga. Efficient and modular consensus­free reconfigura­
tion for fault­tolerant storage. In OPODIS, pages 26:1–26:17, 2017.

[11] Bowen Alpern and Fred B Schneider. Recognizing safety and liveness.
Distributed computing, 2(3):117–126, 1987.

[12] Lorenzo Alvisi, Dahlia Malkhi, Evelyn Pierce, Michael K Reiter, and Re­
becca N Wright. Dynamic byzantine quorum systems. In Proceeding In­
ternational Conference on Dependable Systems and Networks. DSN 2000,
pages 283–292. IEEE, 2000.

[13] James Aspnes, Hagit Attiya, and Keren Censor. Max registers, counters,
and monotone circuits. In PODC, pages 36–45, 2009.

[14] Hagit Attiya, Amotz Bar­Noy, andDannyDolev. Sharingmemory robustly
in message­passing systems. Journal of the ACM (JACM), 42(1):124–142,
1995.

[15] Hagit Attiya, Hyun Chul Chung, Faith Ellen, Saptaparni Kumar, and Jen­
nifer L. Welch. Emulating a shared register in a system that never stops
changing. IEEE Trans. Parallel Distrib. Syst., 30(3):544–559, 2019.

[16] Hagit Attiya, Maurice Herlihy, and Ophir Rachman. Atomic snapshots
using lattice agreement. Distributed Comput., 8(3):121–132, 1995.

[17] Roberto Baldoni, Silvia Bonomi, Anne­Marie Kermarrec, and Michel
Raynal. Implementing a register in a dynamic distributed system. In
ICDCS, pages 639–647, 2009.

[18] Mihir Bellare and Sara K Miner. A forward­secure digital signature
scheme. In Annual International Cryptology Conference, pages 431–448.
Springer, 1999.

[19] Xavier Boyen, Hovav Shacham, Emily Shen, and Brent Waters. Forward­
secure signatures with untrusted update. In Proceedings of the 13th ACM
conference on Computer and communications security, pages 191–200,
2006.

71

[20] Manuel Bravo, Gregory Chockler, and Alexey Gotsman. Making byzan­
tine consensus live. In 34th International Symposium on Distributed Com­
puting (DISC 2020). Schloss Dagstuhl­Leibniz­Zentrum für Informatik,
2020.

[21] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of
blockchains. PhD thesis, 2016.

[22] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. Introduction to
reliable and secure distributed programming. Springer Science & Busi­
ness Media, 2011.

[23] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward­secure public­key
encryption scheme. Journal of Cryptology, 20(3):265–294, 2007.

[24] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance.
In OSDI, volume 99, pages 173–186, 1999.

[25] Miguel Castro, Rodrigo Rodrigues, and Barbara Liskov. Base: Using ab­
straction to improve fault tolerance. ACM Transactions on Computer Sys­
tems (TOCS), 21(3):236–269, 2003.

[26] Liming Chen and Algirdas Avizienis. N­version programming: A fault­
tolerance approach to reliability of software operation. In Proc. 8th IEEE
Int. Symp. on Fault­Tolerant Computing (FTCS­8), volume 1, pages 3–9,
1978.

[27] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo
Alvisi, Mike Dahlin, and Taylor Riche. Upright cluster services. In Pro­
ceedings of the ACM SIGOPS 22nd symposium onOperating systems prin­
ciples, pages 277–290, 2009.

[28] Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov,
Matteo Monti, Matej Pavlovic, Yvonne­Anne Pignolet, Dragos­Adrian
Seredinschi, Andrei Tonkikh, and Athanasios Xygkis. Online payments

72

by merely broadcasting messages. In 2020 50th Annual IEEE/IFIP Inter­
national Conference on Dependable Systems and Networks (DSN), pages
26–38. IEEE, 2020.

[29] Luciano Freitas de Souza, Petr Kuznetsov, Thibault Rieutord, and Sara
Tucci­Piergiovanni. Accountability and reconfiguration: Self­healing lat­
tice agreement. arXiv preprint arXiv:2105.04909, 2021.

[30] John R Douceur. The sybil attack. In International workshop on peer­to­
peer systems, pages 251–260. Springer, 2002.

[31] Manu Drijvers, Sergey Gorbunov, Gregory Neven, and Hoeteck Wee.
Pixel: Multi­signatures for consensus. In 29th USENIX Secu­
rity Symposium (USENIX Security 20), Boston, MA, August 2020.
USENIX Association. URL: https://www.usenix.org/conference/
usenixsecurity20/presentation/drijvers.

[32] Sisi Duan, Sean Peisert, and Karl N Levitt. hbft: speculative byzantine
fault tolerance with minimum cost. IEEE Transactions on Dependable
and Secure Computing, 12(1):58–70, 2014.

[33] Partha Dutta and Rachid Guerraoui. The inherent price of indulgence.
Distributed Computing, 18(1):85–98, 2005.

[34] Jose Faleiro, Sriram Rajamani, Kaushik Rajan, Ganesan Ramalingam, and
Kapil Vaswani. Generalized lattice agreement. In PODC, pages 125–134,
2012.

[35] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibil­
ity of distributed consensus with one faulty process. Journal of the ACM
(JACM), 32(2):374–382, 1985.

[36] Eli Gafni. Round­by­round fault detectors: Unifying synchrony and asyn­
chrony. In PODC, pages 143–152, 1998.

[37] Eli Gafni and Dahlia Malkhi. Elastic configuration maintenance via a par­
simonious speculating snapshot solution. In DISC, pages 140–153, 2015.

73

https://www.usenix.org/conference/usenixsecurity20/presentation/drijvers
https://www.usenix.org/conference/usenixsecurity20/presentation/drijvers

[38] Seth Gilbert, Nancy A Lynch, and Alexander A Shvartsman. Rambo: a
robust, reconfigurable atomic memory service for dynamic networks. Dis­
tributed Computing, 23(4):225–272, 2010.

[39] Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Yvonne­Anne Pig­
nolet, Dragos­Adrian Seredinschi, and Andrei Tonkikh. Dynamic byzan­
tine reliable broadcast. In 24th International Conference on Principles of
Distributed Systems (OPODIS 2020). Schloss Dagstuhl­Leibniz­Zentrum
für Informatik, 2021.

[40] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny
Pinkas, Michael Reiter, Dragos­Adrian Seredinschi, Orr Tamir, and Alin
Tomescu. Sbft: a scalable and decentralized trust infrastructure. In 2019
49th Annual IEEE/IFIP international conference on dependable systems
and networks (DSN), pages 568–580. IEEE, 2019.

[41] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness
condition for concurrent objects. ACMTransactions on Programming Lan­
guages and Systems (TOPLAS), 12(3):463–492, 1990.

[42] Leander Jehl, Roman Vitenberg, and Hein Meling. Smartmerge: A new
approach to reconfiguration for atomic storage. In DISC, pages 154–169,
2015.

[43] Idit Keidar and Sergio Rajsbaum. On the cost of fault­tolerant consen­
sus when there are no faults–a tutorial. In Latin­American Symposium on
Dependable Computing, pages 366–368. Springer, 2003.

[44] Anne­Marie Kermarrec and Maarten Van Steen. Gossiping in distributed
systems. ACM SIGOPS operating systems review, 41(5):2–7, 2007.

[45] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Ed­
mund Wong. Zyzzyva: speculative byzantine fault tolerance. In Proceed­
ings of twenty­first ACM SIGOPS symposium on Operating systems prin­
ciples, pages 45–58, 2007.

74

[46] Saptaparni Kumar and Jennifer L. Welch. Byzantine­tolerant register in
a system with continuous churn. CoRR, abs/1910.06716, 2019. URL:
http://arxiv.org/abs/1910.06716, arXiv:1910.06716.

[47] Klaus Kursawe. Optimistic byzantine agreement. In 21st IEEE Sympo­
sium on Reliable Distributed Systems, 2002. Proceedings., pages 262–267.
IEEE, 2002.

[48] Petr Kuznetsov, Yvonne­Anne Pignolet, Pavel Ponomarev, and Andrei
Tonkikh. Permissionless and asynchronous asset transfer [technical re­
port]. arXiv preprint arXiv:2105.04966, 2021.

[49] Petr Kuznetsov, Thibault Rieutord, and Sara Tucci­Piergiovanni. Recon­
figurable lattice agreement and applications. In OPODIS, 2019.

[50] Petr Kuznetsov and Andrei Tonkikh. Asynchronous reconfiguration with
byzantine failures. In 34th International Symposium on Distributed Com­
puting (DISC 2020). Schloss Dagstuhl­Leibniz­Zentrum für Informatik,
2020.

[51] Petr Kuznetsov, Andrei Tonkikh, and Yan X Zhang. Revisiting optimal
resilience of fast byzantine consensus. arXiv preprint arXiv:2102.12825,
2021.

[52] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications, 1978.

[53] Leslie Lamport. Byzantizing paxos by refinement. In International Sym­
posium on Distributed Computing, pages 211–224. Springer, 2011.

[54] Leslie Lamport. The part­time parliament. In Concurrency: the Works of
Leslie Lamport, pages 277–317. 2019.

[55] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25,
2001.

[56] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25,
2001.

75

http://arxiv.org/abs/1910.06716
http://arxiv.org/abs/1910.06716

[57] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Reconfiguring a state
machine. SIGACT News, 41(1):63–73, 2010.

[58] Barbara Liskov and James Cowling. Viewstamped replication revisited.
2012.

[59] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Dis­
tributed computing, 11(4):203–213, 1998.

[60] Tal Malkin, Daniele Micciancio, and Sara Miner. Efficient generic
forward­secure signatures with an unbounded number of time periods.
In International Conference on the Theory and Applications of Crypto­
graphic Techniques, pages 400–417. Springer, 2002.

[61] J­P Martin and Lorenzo Alvisi. A framework for dynamic byzantine stor­
age. In International Conference on Dependable Systems and Networks,
2004, pages 325–334. IEEE, 2004.

[62] J­P Martin and Lorenzo Alvisi. Fast byzantine consensus. IEEE Transac­
tions on Dependable and Secure Computing, 3(3):202–215, 2006.

[63] Oded Naor and Idit Keidar. Expected linear round synchronization: The
missing link for linear byzantine smr. arXiv preprint arXiv:2002.07539,
2020.

[64] Brian M Oki and Barbara H Liskov. Viewstamped replication: A new
primary copy method to support highly­available distributed systems. In
Proceedings of the seventh annual ACM Symposium on Principles of dis­
tributed computing, pages 8–17, 1988.

[65] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement
in the presence of faults. Journal of the ACM (JACM), 27(2):228–234,
1980.

[66] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski.
Conflict­free replicated data types. In SSS, pages 386–400, 2011.

76

[67] Nibesh Shrestha, Mohan Kumar, and SiSi Duan. Revisiting hbft: Spec­
ulative byzantine fault tolerance with minimum cost. arXiv preprint
arXiv:1902.08505, 2019.

[68] Yee Jiun Song and Robbert van Renesse. Bosco: One­step byzantine asyn­
chronous consensus. In International Symposium on Distributed Comput­
ing, pages 438–450. Springer, 2008.

[69] Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi. Dynamic recon­
figuration: A tutorial (tutorial). In 19th International Conference on Prin­
ciples of Distributed Systems (OPODIS 2015). Schloss Dagstuhl­Leibniz­
Zentrum fuer Informatik, 2016.

[70] Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi. Dynamic recon­
figuration: Abstraction and optimal asynchronous solution. InDISC, pages
40:1–40:15, 2017.

[71] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai
Abraham. Hotstuff: Bft consensus with linearity and responsiveness. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, pages 347–356, 2019.

[72] Xiong Zheng, Changyong Hu, and Vijay K. Garg. Lattice agreement in
message passing systems. In 32nd International Symposium onDistributed
Computing, DISC 2018, New Orleans, LA, USA, October 15­19, 2018,
pages 41:1–41:17, 2018.

77

A Reconfiguration Appendix

A.1 Pseudocode for the DBLA implementation

In this section, the complete pseudocode of the Dynamic Byzantine Lattice
Agreement abstraction, defined in Section 1.4, is provided. The pseudocode
is split into two parts: Algorithm 4 describes the behavior of a correct client and
Algorithm 5 describes the behavior of a correct replica. In the beginning of each
algorithm, all parameters, global variables, and auxiliary functions used in the
pseudocode are defined.7

Additionally, “RB­Broadcast ⟨DESCRIPTOR, msgParams…⟩” is used to de­
note a call to the global reliable broadcast primitive introduced in Section 1.3.6,
and “URB­Broadcast ⟨DESCRIPTOR, msgParams …⟩ in C” is used to denote a
call to the local uniform reliable broadcast primitive in configuration C (see
Section 1.3.6).

Execution environment. Single­threaded execution of the pseudocode is as­
sumed. The lines of code are to be executed one by one in a sequential order.
Some events (such as message delivery or an assignment to a global variable)
may activate some handlers, but the execution of these handlers is delayed.
However, some fairness is assumed, in a sense that if some handler remains
“ready” indefinitely, it will eventually be executed. Sometimes waiting is ex­
plicitly mentioned in the code (e.g., Algorithm 4, line 85). In these places, the
control flow may switch to other blocks. It may later return to the line after
the “wait for” statement if the condition in the statement is satisfied.

Notation. The notation “let var = expression” is to denote an assignment to
a local variable and “var ← expression” to denote an assignment to a global
variable (they are usually defined in the “Global variables” section).

7A global variable is a variable that can be accessed from anywhere in the code executed by the same process.
This is not to be confused with shared variables in the shared memory model.

78

Algorithm 4 DBLA: code for client p
Parameters:

68: Lattice of configurations C and the initial configuration C init

69: The object lattice L and the initial value V initu
70: Boolean functions VerifyHistory(h, σ) and VerifyInputValue(v, σ)

Global variables:
71: history ⊆ C, initially {C init} ▷ local history of this process
72: σhistory ∈ Σ, initially ⊥ ▷ proof for the local history
73: curVals ⊆ L× Σ, initially {(V init,⊥)} ▷ known verifiable input values with proofs
74: status ∈ {inactive, proposing, confirming}, initially inactive
75: seqNum ∈ Z, initially 0 ▷ used to match requests with responses
76: acks1, initially ∅ ▷ a set of pairs of form (processId, sig)
77: acks2, initially ∅ ▷ a set of pairs of form (processId, sig)

Auxiliary functions:
78: HighestConf(h) ▷ returns the highest configuration in history h
79: ContainsQuorum(acks, C) ▷ returns true iff
∃Q ∈ quorums(C) such that ∀r ∈ Q : (r, ∗) ∈ acks

80: JoinAll(vs) ▷ returns the lattice join of all elements in vs
81: VerifyInputValues(vs) ▷ returns true iff ∀(v, σ) ∈ vs : VerifyInputValue(v, σ)
82: FSVerify(m, r, s, t) ▷ verifies forward­secure signature (see Section 1.1)

83: operation Propose(v, σ)
84: Refine({(v, σ)})
85: wait for ContainsQuorum(acks2,HighestConf(history))
86: status← inactive
87: let σ = (curVals, history, σhistory, acks1, acks2)
88: return (JoinAll(curVals), σ)

89: operation UpdateHistory(h, σ)
90: RB­Broadcast ⟨NEWHISTORY, h, σ⟩

91: function VerifyOutputValue(v, σ)
92: if σ = ⊥ then return v = V init

93: let (vs, h, σh, proposeAcks, confirmAcks) = σ

94: let C = HighestConf(h)
95: return JoinAll(vs) = v ∧ VerifyHistory(h, σh)

96: ∧ ContainsQuorum(proposeAcks, C) ∧ ContainsQuorum(confirmAcks, C)

97: ∧ ∀ (r, s) ∈ proposeAcks : FSVerify((PROPOSERESP, vs), r, s, height(C))

98: ∧ ∀ (r, s) ∈ confirmAcks : FSVerify((CONFIRMRESP, proposeAcks), r, s, height(C))

79

99: procedure Refine(vs)
100: acks1 ← ∅; acks2 ← ∅
101: curVals← curVals ∪ vs
102: seqNum← seqNum+ 1

103: status← proposing
104: let C = HighestConf(history)
105: send ⟨PROPOSE, curVals, seqNum, C⟩ to replicas(C)

106: upon ContainsQuorum(acks1,HighestConf(history))
107: status← confirming
108: let C = HighestConf(history)
109: send ⟨CONFIRM, acks1, seqNum, C⟩ to replicas(C)

110: upon receive ⟨PROPOSERESP, vs, sig, sn⟩ from replica r
111: let sigValid = FSVerify((PROPOSERESP, vs), r, sig, height(HighestConf(history)))
112: if status = proposing ∧ sn = seqNum ∧ sigValid then
113: if vs ⊈ curVals ∧ VerifyInputValues(vs \ curVals) then Refine(vs)
114: else if vs = curVals then acks1 ← acks1 ∪ {(r, sig)}

115: upon receive ⟨CONFIRMRESP, sig, sn⟩ from replica r
116: let sigValid = FSVerify((CONFIRMRESP, acks1), r, sig, height(HighestConf(history)))
117: if status = confirming ∧ sn = seqNum ∧ sigValid then acks2 ← acks2 ∪ {(r, sig)}

118: upon RB­deliver ⟨NEWHISTORY, h, σ⟩ from any sender
119: if VerifyHistory(h, σ) ∧ history ⊂ h then
120: history← h; σhistory ← σ

121: if status ∈ {proposing, confirming} then Refine(∅)

80

Algorithm 5 DBLA: code for replica r
Parameters: C, L, C init, V init, VerifyHistory(h, σ), and VerifyInputValue(v, σ) (see Algo­
rithm 4)
Global variables:

122: history ⊆ C, initially {C init} ▷ local history of this process
123: curVals ⊆ L× Σ, initially {(V init,⊥)} ▷ known verifiable input values with proofs
124: Ccurr ∈ C, initially C init ▷ current configuration
125: C inst ∈ C, initially C init ▷ installed configuration
126: seqNum ∈ Z, initially 0 ▷ used to match requests with responses

Auxiliary functions:
127: HighestConf, ContainsQuorum, JoinAll, VerifyInputValues (see Algorithm 4).
128: FSSign(message, timestamp) ▷ produces a forward­secure signature (see Section 1.1)
129: UpdateFSKey(t) ▷ updates the signing timestamp (see Section 1.1)

130: upon receive ⟨PROPOSE, vs, sn, C⟩ from client c
131: wait for C = C inst ∨ HighestConf(history) ̸⊑ C

132: if C = HighestConf(history) ∧ VerifyInputValues(vs \ curVals) then
133: curVals← curVals ∪ vs
134: let sig = FSSign((PROPOSERESP, curVals), height(C))

135: send ⟨PROPOSERESP, curVals, sig, sn⟩ to c
136: else ignore the message

137: upon receive ⟨CONFIRM, proposeAcks, sn, C⟩ from client c
138: wait for C = C inst ∨ HighestConf(history) ̸⊑ C

139: if C = HighestConf(history) then
140: let sig = FSSign((CONFIRMRESP, proposeAcks), height(C))

141: send ⟨CONFIRMRESP, sig, sn⟩ to c
142: else ignore the message

▷ State transfer
143: upon Ccurr ̸= HighestConf({C ∈ history | r ∈ replicas(C)})
144: let Cnext = HighestConf({C ∈ history | r ∈ replicas(C)})
145: let S = {C ∈ history | Ccurr ⊑ C ⊏ Cnext}
146: seqNum← seqNum+ 1

147: for each C ∈ S do
148: send ⟨UPDATEREAD, seqNum, C⟩ to replicas(C)

149: wait for (C ⊏ Ccurr) ∨ (responses from any Q ∈ quorums(C) with s.n. seqNum)

150: if Ccurr ⊏ Cnext then
151: Ccurr ← Cnext

152: URB­Broadcast ⟨UPDATECOMPLETE⟩ in Cnext

81

153: upon RB­deliver ⟨NEWHISTORY, h, σ⟩ from any sender
154: if VerifyHistory(h, σ) ∧ history ⊂ h then
155: history← h

156: UpdateFSKey(height(HighestConf(history)))

157: upon receive ⟨UPDATEREAD, sn, C⟩ from replica r′

158: wait for C ⊏ HighestConf(history) ▷ only reply after UpdateFSKey
159: send ⟨UPDATEREADRESP, curVals, sn⟩ to r′

160: upon receive ⟨UPDATEREADRESP, vs, sn⟩ from replica r′

161: if VerifyInputValues(vs \ curVals) then curVals← curVals ∪ vs

162: upon URB­deliver ⟨UPDATECOMPLETE⟩ in C from quorum Q ∈ quorums(C)

163: wait for C ∈ history
164: if C inst ⊏ C then
165: if Ccurr ⊏ C then Ccurr ← C

166: C inst ← C

167: trigger upcall InstalledConfig(C)

168: if r /∈ replicas(C) then halt

82

A.2 Correctness proof of the DBLA implementation

A.2.1 Safety

Recall that a configuration is called candidate iff it appears in some verifiable
history. The following lemma gathers some obvious yet very useful statements
about candidate configurations.

Lemma A.1 (Candidate configurations).

1. There is a finite number of candidate configurations.

2. All candidate configurations are comparable with “⊑”.

Proof. The total number of verifiable histories is required to be finite, and each
history is finite, hence (1). All verifiable histories are required to be related by
containment and all configurations within one history are required to be compa­
rable, hence (2).

Recall that a configuration is called pivotal if it is the last configuration in
some verifiable history. Non­pivotal candidate configurations are called tenta­
tive. Intuitively, the next lemma states that in the rest of the proofs we can almost
always consider only pivotal configurations. Tentative configurations are both
harmless and useless.

Lemma A.2 (Tentative configurations).

1. No correct client will ever make a request to a tentative configuration.

2. Tentative configurations cannot be installed.

3. A correct process will never invoke FSVerify with timestamp height(C)

for any tentative configuration C.

4. A correct replica will never broadcast any message via the uniform reli­
able broadcast primitive in a tentative configuration.

Proof. Follows directly from the algorithm. Both clients and replicas
only operate on configurations that were obtained by invoking the function
HighestConf(h) on some verifiable configuration.

83

The next lemma states that correct processes cannot “miss” any pivotal con­
figurations in their local histories. This is crucial for the correctness of the state
transfer protocol.

Lemma A.3. If C ⊑ HighestConf(h), where C is a pivotal configuration and h
is the local history of a correct process, then C ∈ h.

Proof. Follows directly from the definition of a pivotal configuration and the
requirement that all verifiable histories are related by containment (see Sec­
tion 1.3.4).

Recall that a configuration is called superseded iff some higher configura­
tion is installed (see Section 1.3.3). A configuration is installed iff some correct
replica has triggered the InstalledConfig upcall (Algorithm 5, line 167). For
this, the correct replica must receive a quorum of UPDATECOMPLETE messages
via the uniform reliable broadcast primitive (Algorithm 5, line 162).

Theorem A.4 (Dynamic Validity). Our implementation of DBLA satisfies Dy­
namic Validity. I.e., only a candidate configuration can be installed.

Proof. Follows directly from the implementation. A correct replica will not
install a configuration until it is in the replica’s local history (Algorithm 5,
line 163).

In our algorithm, it is possible for a configuration to be installed after it
was superseded. Imagine that a quorum of replicas broadcast UPDATECOMPLETE
messages in some configuration C which is not yet installed. After that, before
any replica delivers those messages, a higher configuration is installed, making
C superseded. It is possible that some correct replica r ∈ replicas(C) that does
not yet know that a higher configuration is installed, will deliver the broadcast
messages and trigger the upcall InstalledConfig(C) (Algorithm 5, line 167).

Let us call the configurations that were installed while being active (i.e., not
superseded) “properly installed”. We will use this definition to prove next few
lemmas.

Lemma A.5. The lowest properly installed configuration higher than configu­
ration C is the first installed configuration higher than C in the real­time order.

84

Proof. Let N be the lowest properly installed configuration higher than C. If
some configuration higher than N were installed earlier, then N would not be
properly installed (by the definition of a properly installed configuration). If
some configuration between C and N were installed earlier, then N would not
be the lowest.

The following lemma stipulates that our state transfer protocol makes the
superseded pivotal configurations “harmless” by leveraging a forward­secure
signature scheme.

Lemma A.6 (Key update). If a pivotal configuration C is superseded, then no
quorum of replicas in that configuration is capable of signing messages with
timestamp height(C), i.e., ∄Q ∈ quorums(C) s.t. ∀r ∈ Q : str ≤ height(C).

Proof. Let N be the lowest properly installed configuration higher than C. Let
us consider the moment when N was installed. By the algorithm, all correct
replicas in some quorumQN ∈ quorums(N) had to broadcast UPDATECOMPLETE
messages before N was installed (Algorithm 5, line 162). Since N was not yet
superseded at that moment, there was at least one correct replica rN ∈ QN .

By Lemma A.3, C was in rN ’s local history whenever it performed state
transfer to any configuration higher than C. By the protocol, a correct replica
only advances its Ccurr variable after executing the state transfer protocol (Al­
gorithm 5, line 151) or right before installing a configuration (Algorithm 5,
line 165). Since no configurations between C and N were yet installed, rN had
to pass through C in its state transfer protocol and to receive UPDATEREADRESP
messages from some quorum QC ∈ quorums(C) (Algorithm 5, line 149).

Recall that correct replicas update their private keys whenever they learn
about a higher configuration (Algorithm 5, line 156) and that they will only reply
to message (UPDATEREAD, sn, C) onceC is not the highest configuration in their
local histories (Algorithm 5, line 158). This means that all correct replicas in
QC actually had to update their private keys beforeN was installed, and, hence,
before C was superseded. By the quorum intersection property, this means that
in each quorum in C at least one replica updated its private key to a timestamp
higher than height(C) and will not be capable of signing messages with times­
tamp height(C) even if it becomes Byzantine.

85

Note that in a tentative configuration there might be arbitrarily many Byzan­
tine replicas that have not updated their private keys. This is inevitable in asyn­
chronous system: forcing the replicas in tentative configurations to update their
private keys would require solving consensus. This does not affect correct pro­
cesses because, as shown in Lemma A.2, tentative configurations are harmless.
However, it is important to remember this when designing new dynamic proto­
cols.

The following lemma implies that the state is correctly transferred between
configurations.

Lemma A.7 (State transfer correctness).
If σ = (vs, h, σh, proposeAcks, confirmAcks) is a valid proof for v, then for
each active installed configuration D such that HighestConf(h) ⊏ D, there
is a quorum QD ∈ quorums(D) such that for each correct replica r ∈ QD:
vs ⊆ curValsr.

Proof. Let C = HighestConf(h). We proceed by induction on the sequence of
all properly installed configurations higher than C. Let us denote this sequence
by C̃. By the definition of a properly installed configuration, these are precisely
the configurations that we consider in the statement of the lemma.

Let N be the lowest configuration in C̃. Let QC ∈ quorums(C) be a quo­
rum of replicas whose signatures are in proposeAcks. Consider the moment
of installation of N . There must be a quorum QN ∈ quorums(N) in which
all correct replicas broadcast ⟨UPDATECOMPLETE, N⟩ before the moment of in­
stallation. For each correct replica rN ∈ QN , rN passed with its state trans­
fer protocol through configuration C and received UPDATEREADRESP messages
from some quorum of replicas in C. Note that at that moment configuration
C was not yet superseded. By the quorum intersection property, there is at
least one correct replica rC ∈ QC that sent an UPDATEREADRESP message to
rN (Algorithm 5, line 159). Since rC will send the UPDATEREADRESP mes­
sage only after updating its private keys (Algorithm 5, line 158), it had to sign
(PROPOSERESP, vs) (Algorithm 5, line 134) before sending reply to rN , which
means that the UPDATEREADRESP message from rC to rN must have contained
a set of values that includes all values from vs. This proves the base case of the

86

induction.
Let us consider any configuration D ∈ C̃ such that N ⊏ D. Let M be the

highest configuration in C̃ such that N ⊑ M ⊏ D (in other words, the closest
to D in C̃). Assume that the statement holds for M , i.e., while M was active,
there were a quorum QM ∈ quorums(M) such that for each correct replica
rM ∈ QM : vs ⊆ curValsrM . Similarly to the base case, let us consider a quorum
QD ∈ quorums(D) such that every correct replica in QD reliably broadcast
⟨UPDATECOMPLETE, D⟩ before D was installed. For each correct replica rD ∈
QD, by the quorum intersection property, there is at least one correct replica
in QM that sent an UPDATEREADRESP message to rD. This replica attached its
curVals to the message, which contained vs. This proves the induction step and
completes the proof.

The next lemma states that if two output values were produced in the same
configuration, they are comparable. In a static system it could be proven by
simply referring to the quorum intersection property. In a dynamic Byzantine
system, however, to use the quorum intersection, we need to prove that the con­
figuration was active during the whole period when the clients were exchanging
data with the replicas. In other words, we need to prove that the “slow reader” at­
tack is impossible. Luckily, we have the second stage of our algorithm designed
for this sole purpose.

Lemma A.8 (BLA­Comparability in one configuration).
If σ1 = (vs1, h1, σh1, proposeAcks1, confirmAcks1) is a valid proof for output
value v1,
and σ2 = (vs2, h2, σh2, proposeAcks2, confirmAcks2) is a valid proof for output
value v2,
and HighestConf(h1) = HighestConf(h2), then v1 and v2 are comparable.

Proof. Let C = HighestConf(h1) = HighestConf(h2). By definition, the fact
that σ is a valid proof for v implies that VerifyOutputValue(v, σ) = true (Al­
gorithm 4, line 91). By the implementation, h1 and h2 are verifiable histories
(Algorithm 4, line 95). Therefore, C is a pivotal configuration.

The set confirmAcks1 contains signatures from a quorum of replicas of con­
figuration C, with timestamp height(C). Each of these signatures had to be pro­

87

duced after each of the signatures in proposeAcks1 because they sign the mes­
sage (CONFIRMRESP, proposeAcks1) (Algorithm 5, line 140). Combining this
with the statement of Lemma A.6 (Key Update), it follows that at the moment
when the last signature in the set proposeAcks1 was created, the configurationC
was active (otherwise it would be impossible to gather confirmAcks1). We can
apply the same argument to the sets proposeAcks2 and confirmAcks2.

It follows that there are quorums Q1, Q2 ∈ quorums(C) and a moment in
time t such that: (1) C is not superseded at time t, (2) all correct replicas in
Q1 signed message (PROPOSERESP, vs1) before t, and (3) all correct replica in
Q2 signed message (PROPOSERESP, vs2) before t. Since C is not superseded at
time t, there must be a correct replica in Q1 ∩Q2 (due to quorum intersection),
which signed both (PROPOSERESP, vs1) and (PROPOSERESP, vs2) (Algorithm 5,
line 134). Since correct replicas only sign PROPOSERESP messages with com­
parable sets of values8, vs1 and vs2 are comparable, i.e., either vs1 ⊆ vs2 or
vs2 ⊂ vs1. Hence, v1 = JoinAll(vs1) and v2 = JoinAll(vs2) are comparable.

Finally, let us combine the two previous lemmas to prove the BLA­
Comparability property of our DBLA implementation.

TheoremA.9 (BLA­Comparability). Our implementation of DBLA satisfies the
BLA­Comparability property. That is, all verifiable output values are compara­
ble.

Proof. Let σ1 = (vs1, h1, σh1, proposeAcks1, confirmAcks1) be a valid proof
for output value v1, and σ2 = (vs2, h2, σh2, proposeAcks2, confirmAcks2) be a
valid proof for output value v2. Also, let C1 = HighestConf(h1) and C2 =

HighestConf(h2). Since h1 and h2 are verifiable histories (Algorithm 4, line 95),
both C1 and C2 are pivotal by definition.

If C1 = C2, v1 and v2 are comparable by Lemma A.8.
Consider the case when C1 ̸= C2. Without loss of generality, assume

that C1 ⊏ C2. Let Q1 ∈ quorums(C2) be a quorum of replicas whose sig­
natures are in proposeAcks2. Let t be the moment when first correct replica
signed ⟨PROPOSERESP, vs2⟩. Correct replicas only start processing user requests

8Indeed, set curVals at each correct replica can only grow, and the replicas only sign messages with the same
set of verifiable input values as curVals (see Algorithm 5, lines 133–134).

88

in a configuration when this configuration is installed (Algorithm 5, line 131).
Therefore, by Lemma A.7, at time t there was a quorum of replicas Q2 ∈
quorums(C2) such that for every correct replica in Q2: vs1 ⊆ curVals. By
the quorum intersection property, there must be at least one correct replica in
Q1 ∩Q2. Hence, vs1 ⊆ vs2 and JoinAll(vs1) ⊑ JoinAll(vs2).

Theorem A.10 (DBLA safety). Our implementation satisfies the safety
properties of DBLA: BLA­Validity, BLA­Verifiability, BLA­Inclusion, BLA­
Comparability, and Dynamic Validity.

Proof.

• BLA­Validity follows directly from the implementation: a correct client
collects verifiable input values and joins them before returning from
Propose (Algorithm 4, line 88);

• BLA­Verifiability follows directly from how correct replicas form and
check the proofs for output values (Algorithm 4, lines 87 and 93–98);

• BLA­Inclusion follows from the fact that the set curVals of a correct client
only grows (Algorithm 4, line 101);

• BLA­Comparability follows from Theorem A.9;

• Finally, Dynamic Validity follows from Theorem A.4.

A.2.2 Liveness

Lemma A.11 (History Convergence). Local histories of all correct processes
will eventually become identical.

Proof. Let p and q be any two forever­correct processes9. Suppose, for con­
tradiction, that the local histories of p and q have diverged at some point and
will never converge again. Recall that correct processes only adopt verifiable

9If either p or q eventually halts or becomes Byzantine, their local histories are not required to converge.

89

histories, and that the total number of verifiable histories is required to be fi­
nite. Therefore, there is some history hp, which is the the largest history ever
adopted by p, and some history hq which is the the largest history ever adopted
by q. Since all verifiable histories are required to be related by containment and
we assume that hp ̸= hq, one of them must be a subset of the other. Without
loss of generality, suppose that hp ⊂ hq. Since q had to deliver hq through reli­
able broadcast (unless hq is the initial history) and q remains correct forever, p
will eventually deliver hq as well, and will adopt it. Hence, hp is not the largest
history ever adopted by p. A contradiction.

Next, an important definition, which we will use throughout the rest of the
proofs, is introduced.

DefinitionA.12 (Maximal installed configuration). In a given infinite execution,
a maximal installed configuration is a configuration that eventually becomes
installed and never becomes superseded.

Lemma A.13 (Cmax existence). In any infinite execution there is a unique max­
imal installed configuration.

Proof. By Lemma A.1 (Candidate configurations) and Theorem A.4 (Dynamic
Validity), the total number of installed configurations is finite and they are com­
parable. Hence, we can choose a unique maximum among them, which is never
superseded by definition.

Let us denote the (unique) maximal installed configuration by Cmax.

LemmaA.14 (Cmax installation). Themaximal installed configurationwill even­
tually be installed by all correct replicas.

Proof. Since Cmax is installed, by definition, at some point some correct replica
has triggered upcall InstalledConfig(Cmax) (Algorithm 5, line 167). This, in turn,
means that this replica delivered a quorum of UPDATECOMPLETE messages via
the uniform reliable broadcast in Cmax when it was correct. Therefore, even if
this replica later becomes Byzantine, by definition of the uniform reliable broad­
cast, either Cmax will become superseded (which is impossible), or every correct
replica will eventually deliver the same set of UPDATECOMPLETE messages and
install Cmax.

90

Lemma A.15 (State transfer progress). State transfer (Algorithm 5, lines 143–
152) executed by a forever­correct replica always terminates.

Proof. Let r be a correct replica executing state transfer. By LemmaA.1, the to­
tal number of candidate configurations is finite. Therefore, it is enough to prove
that there is no such configuration that r will wait for replies from a quorum of
that configuration indefinitely (Algorithm 5, line 149). Suppose, for contradic­
tion, that there is such configuration C.

If C ⊏ Cmax, then, by Lemma A.14, r will eventually install Cmax, and
Ccurr will become not lower than Cmax (Algorithm 5, line 165). Hence, r will
terminate fromwaiting through the first condition (C ⊏ Ccurr). A contradiction.

Otherwise, if Cmax ⊑ C, then, by the definition of Cmax, C will never be
superseded. Since r remains correct forever, by Lemma A.11 (History Conver­
gence), every correct replica will eventually have C in its local history. Since
reliable links between processes are assumed (see Section 2.1), every correct
replica in replicas(C)will eventually receive r’s UPDATEREADmessage and will
send a reply, which r will receive (Algorithm 5, line 159). Hence, the waiting
on line 149 of Algorithm 5 will eventually terminate through the second con­
dition (r will receive responses from some Q ∈ quorums(C) with the correct
sequence number). A contradiction.

Intuitively, the following lemma states thatCmax is, in some sense, the “final”
configuration. After some point every correct process will operate exclusively
onCmax. No correct process will know about any configuration higher thanCmax

or “care” about any configuration lower than Cmax.

LemmaA.16. Cmax will eventually become the highest configuration in the local
history of each correct process.

Proof. By Lemma A.11 (History Convergence), the local histories of all cor­
rect processes will eventually converge to the same history h. Let D =

HighestConf(h). Since Cmax is installed and never superseded, it cannot be
higher than D (at least one correct replica will always have Cmax in its local
history).

Suppose, for contradiction, that Cmax ⊏ D. In this case, D is never super­
seded, which means that there is a quorum QD ∈ quorums(D) that consists

91

entirely of forever­correct processes. By Lemma A.11 (History Convergence),
all replicas in QD will eventually have D in their local histories and will try to
perform state transfer to it. By Lemma A.15, they will eventually succeed and
install D—a contradiction with the definition of Cmax.

Theorem A.17 (BLA­Liveness). Our implementation of DBLA satisfies the
BLA­Liveness property: if the total number of verifiable input values is finite,
every call to Propose(v, σ) by a forever­correct process eventually returns.

Proof. Let p be a forever­correct client that invoked Propose(v, σ). By
Lemma A.16, Cmax will eventually become the highest configuration in the lo­
cal history of p. If the client’s request will not terminate by the time it learns
about Cmax, the client will call Refine(∅) after it (Algorithm 4, line 121). By
Lemma A.14, Cmax will eventually be installed by all correct replicas. Since
it will never be superseded, there will be a quorum of forever­correct replicas.
Thus, every round of messages from the client will eventually be responded to
by a quorum of correct replicas.

Since the total number of verifiable input values is finite, the client will call
Refine only a finite number of times (Algorithm 4, line 113). After the last call
to Refine, the client will inevitably receive acknowledgments from a quorum of
replicas, andwill proceed to sending CONFIRMmessages (Algorithm 4, line 109).
Again, since there is an available quorum of correct replicas that installed Cmax,
the client will eventually receive enough acknowledgments and will complete
the operation (Algorithm 4, line 86).

Theorem A.18 (DBLA liveness). Our implementation satisfies the liveness
properties of DBLA: BLA­Liveness, Dynamic Liveness, and Installation Live­
ness.

Proof. BLA­Liveness follows from Theorem A.17. Dynamic Liveness and
Installation Liveness follow directly from Lemmas A.16 and A.14 respec­
tively.

92

A.3 Possible optimizations for the DBLA implementation

Here, a few possible directions for optimization are discussed. Applying these
optimizations can significantly reduce the communication cost of the protocol.
These optimizations were not applied in the original pseudocode as it would
significantly complicate the protocol and make it harder to understand.

First, the proofs in the protocol include the full local history of a process.
Moreover, this history comes with its own proof, which also usually contains a
history, and so on. If implemented naively, the size of one proof in bytes will be
at least quadratic with respect to the number of distinct candidate configurations,
which is completely unnecessary. The first observation is that these histories will
be related by containment. So, in fact, they can be compressed just to the size
of the largest one, which is linear. But it is possible to go further and say that, in
fact, in a practical implementation, the processes almost never should actually
send full histories to each other because every process maintains its local history
and all histories with proofs are already disseminated via the reliable broadcast
primitive. When one process wants to send some history to some other process,
it can just send a cryptographic hash of this history. The other process can check
if it already has this history and, if not, ask the sender to only send the missing
parts, instead of the whole history.

Second, a naive implementation of the DBLA protocol would send ever­
growing sets of verifiable input values around, which is, just as with histories,
completely unnecessary. The processes should just limit themselves to sending
diffs between what they know and what they think the recipient knows.

Third, almost every proof in the systems contains signatures from a quorum
of replicas. This adds another linear factor to the communication cost. However,
it can be significantly reduced by the use of forward­secure multi­signatures,
such as Pixel [31], which was designed for similar purposes.

Finally, a suboptimal implementation of lattice agreement is used as the
foundation for the DBLA protocol. Perhaps, adapting a more efficient crash
fault­tolerant asynchronous solution [72] could be beneficial.

93

A.4 Max Register

The presented methodology of constructing dynamic and reconfigurable objects
is not limited to lattice agreement. In this section, an implementation of a dy­
namic version of an atomic Byzantine fault­tolerant Max­Register is presented.
One can then apply the technique presented in Section 1.5 to create a reconfig­
urable Max­Register.

An atomic (a.k.a. linearizable) multi­writer multi­reader Byzantine Max­
Register is a distributed object that has two operations: Read() and Write(v, σ)
and must be parametrized by a boolean function VerifyInputValue(v, σ). As
before, a certificate σ is said to be a valid certificate for input value v iff
VerifyInputValue(v, σ) = true, and a value v is said to be a verifiable
input value iff some process knows σ such that VerifyInputValue(v, σ) =

true. It is assumed that correct clients invoke Write(v, σ) only if
VerifyInputValue(v, σ) = true. However, no assumptions are made on the
number of verifiable input values for this abstraction (i.e., it can be infinite).

The Max­Register object satisfies the following three properties:

• MR­Validity: if Read() returns value v to a correct process, then v is ver­
ifiable input value;

• MR­Atomicity: if some correct process p completed Write(v, σ) or re­
ceived v from Read() strictly before some correct process q invoked
Read(), then the value returned to q must be greater than or equal to v;

• MR­Liveness: every call to Read() and Write(v, σ) by a forever­correct
process eventually returns.

For simplicity, unlike Byzantine Lattice Agreement, Max­Register does not pro­
vide the VerifyOutputValue(v, σ) function.

A.4.1 Dynamic Max­Register implementation

In this section, the implementation of the dynamic version of the Max­Register
abstraction (Dynamic Max­Register or DMR for short) is presented. Overall,
the “application” part of the implementation is very similar to the classical ABD

94

Algorithm 6 Dynamic Max­Register: code for client p
Parameters:

169: Lattice of configurations C and the initial configuration C init

170: Set of values V and the initial value V init

171: Boolean functions VerifyHistory(h, σ) and VerifyInputValue(v, σ)
Global variables:

172: history ⊆ C, initially {C init} ▷ local history of this process
173: seqNum ∈ Z, initially 0 ▷ used to match requests with responses

Auxiliary functions: HighestConf(h), FSVerify (see Section 1.1)

174: operation Read()
175: repeat
176: let (readOk, (v, σ)) = Get()
177: let success = if readOk then Set(v, σ) else false
178: until success
179: return v

180: operationWrite(v, σ)
181: repeat let success = Set(v, σ)
182: until success

183: operation UpdateHistory(h, σ)
184: RB­Broadcast ⟨NEWHISTORY, h, σ⟩

185: procedure Set(v, σ)
186: seqNum← seqNum+ 1
187: let C = HighestConf(history)
188: send ⟨SET, v, seqNum, C⟩ to replicas(C)
189: wait for (HighestConf(history) ̸= C) ∨ (replies from Q ∈ quorums(C) with valid

signatures)
190: return HighestConf(history) ̸= C

191: procedure Get()
192: seqNum← seqNum+ 1
193: let C = HighestConf(history)
194: send ⟨GET, seqNum, C⟩ to replicas(C)
195: wait for (HighestConf(history) ̸= C) ∨ (replies from Q ∈ quorums(C))
196: if HighestConf(history) ̸= C then return (false,⊥)
197: else return (true,maximal verifiable input value among received)

198: upon RB­deliver ⟨NEWHISTORY, h, σ⟩ from any sender
199: if VerifyHistory(h, σ) ∧ history ⊂ h then history← h

95

Algorithm 7 Dynamic Max­Register: code for replica r
Parameters: C, C init, V, V init, VerifyHistory(h, σ), and VerifyInputValue(v, σ) (See Al­
gorithm 6)
Global variables:

200: history ⊆ C, initially {C init} ▷ local history of this process
201: vcurr ∈ V, initially V init

202: σcurr ∈ Σ, initially σinit

203: Ccurr ∈ C, initially C init ▷ current configuration
204: C inst ∈ C, initially C init ▷ installed configuration

Auxiliary functions: HighestConf(h), FSSign(m, t), UpdateFSKey(t) (see Section 1.1)

205: upon receive ⟨GET, sn, C⟩ from client c
206: wait for C = C inst ∨ HighestConf(history) ̸⊑ C
207: if C = HighestConf(history) then
208: send ⟨GETRESP, vcurr, σcurr, sn⟩ to c
209: else ignore the message

210: upon receive ⟨SET, v, σ, sn, C⟩ from client c
211: wait for C = C inst ∨ HighestConf(history) ̸⊑ C
212: if C = HighestConf(history) ∧ VerifyInputValue(v, σ) then
213: if v > vcurr then (vcurr, σcurr)← (v, σ)

214: send ⟨SETRESP, FSSign((c, sn), height(C)), sn⟩ to c
215: else ignore the message

▷ State transfer
216: upon Ccurr ̸= HighestConf({C ∈ history | r ∈ replicas(C)})
217: Same as for DBLA (Algorithm 5, lines 143–152)

218: upon receive ⟨UPDATEREAD, C, sn⟩ from replica r′
219: wait for C ⊏ HighestConf(history)
220: send ⟨UPDATEREADRESP, vcurr, σcurr, sn⟩ to r′

221: upon receive ⟨UPDATEREADRESP, v, σ, sn⟩ from replica r′
222: if VerifyInputValue(v, σ) ∧ v > vcurr then (vcurr, σcurr)← (v, σ)

223: upon RB­deliver ⟨NEWHISTORY, h, σ⟩ from any sender
224: Same as for DBLA (Algorithm 5, lines 153–156)

225: upon URB­deliver ⟨UPDATECOMPLETE⟩ in C from quorum Q ∈ quorums(C)
226: Same as for DBLA (Algorithm 5, lines 162–168)

96

algorithm [14], and the “dynamic” part of the implementation is almost the same
as in DBLA.

Client implementation. From the client’s perspective, the two main proce­
dures are Get() and Set(v, σ) (not to be confused with the Read and Write op­
erations). Set(v, σ) (Algorithm 6, lines 185–190) is used to store the value on a
quorum of replicas of the most recent configuration. It returns true iff it man­
ages to receive signed acknowledgments from a quorum of some configuration.
Forward­secure signatures are used to prevent the “I still work here” attack.
Since Set does not try to read any information from the replicas, it is not suscep­
tible to the “slow reader” attack. Get() (lines 191–197) is very similar to Set(. . .)
and is used to request information from a quorum of replicas of the most recent
configuration. Since the VerifyOutputValue(. . .) function is not provided, the
replies from replicas are not signed (Algorithm 7, line 208). Therefore, Get()
is susceptible to both the “I still work here” and the “slow reader” attack when
used by itself. Later in this section, it is discussed how the invocation of Set(. . .)
right after Get() (Algorithm 6, line 177) prevents these issues.

Operation Write(v, σ) (lines 180–182) is used by correct clients to store val­
ues in the register. It simply performs repeated calls to Set(v, σ) until some call
succeeds to reach a quorum of replicas. Retries are safe because, as in lattice
agreement, write requests to a max­register are idempotent. Since the total num­
ber of verifiable histories is assumed to be finite, only a finite number of retries
is possible.

Operation Read() (lines 174–179) is used to request the current value from
the register, and it consists of repeated calls to both Get() and Set(. . .). The
call to Get() is simply used to query information from the replicas. The call to
Set(. . .) is usually called “the write­back phase” and serves two purposes here:

• It is used instead of the “confirming” phase to prevent the “I still work
here” and the “slow­reader” attacks. Indeed, if the configuration was su­
perseded during the execution of Get(), Set(. . .) will not succeed because
it will not be able to gather a quorum of signed replies in the same con­
figuration;

97

• Also, it is used to order the calls to Read() and to guarantee the MR­
Atomicity property. Intuitively, if some correct process successfully com­
pleted Set(v, σ) strictly before some other correct process invoked Get(),
the later process will receive a value that is not smaller than v (unless the
“slow reader” attack happens).

Replica implementation. The replica implementation (Algorithm 7) essen­
tially follows the implementation of DBLA (Algorithm 5), except that the
replica handles client requests specific toMax­Register (Algorithm 7, lines 205–
215). The only other difference is that in handling the UPDATEREAD and
UPDATEREADRESP messages (Algorithm 7, lines 218–222), the replicas ex­
change vcurr and σcurr instead of curVals, as in DBLA.

A.4.2 Proof of correctness

Since the Dynamic Max­Register implementation uses the same state transfer
protocol as DBLA, most proofs from Section A.2 that apply to DBLA, also
apply to DMR (with some minor adaptations). To avoid repetition, here, only
the statements of such theorems are provided, without proofs. Then, several
theorems specific to DMR are introduced.

DMR safety.

Lemma A.19 (Candidate configurations).

1. Each candidate configuration is present in some verifiable history.

2. There is a finite number of candidate configurations.

3. All candidate configurations are comparable with “⊑”.

Lemma A.20 (Tentative configurations).

1. No correct client will ever make a request to a tentative configuration.

2. Tentative configurations cannot be installed.

98

3. A correct process will never invoke FSVerify with timestamp height(C)

for any tentative configuration C.

4. A correct replica will never broadcast any message via the uniform reli­
able broadcast primitive in a tentative configuration.

Lemma A.21. If C ⊑ HighestConf(h), where C is a pivotal configuration and
h is the local history of a correct process, then C ∈ h.

Theorem A.22 (Dynamic Validity). The implementation of DMR satisfies Dy­
namic Validity. I.e., only a candidate configuration can be installed.

Lemma A.23 (Key update). If a pivotal configuration C is superseded, then
there is no quorum of replicas in that configuration capable of signing mes­
sages with timestamp height(C), i.e., ∄Q ∈ quorums(C) s.t. ∀r ∈ Q : str ≤
height(C).

A correct client is said to complete its operation in configuration C iff at the
moment when the client completes its operation, the highest configuration in its
local history is C.

Lemma A.24 (State transfer correctness).
If some correct process completed Write(v, σ) in C or received v from Read()
operation completed in C, then for each active installed configuration D such
that C ⊏ D, there is a quorum QD ∈ quorums(D) such that for each correct
replica in QD: vcurr ≥ v.

The following lemma is the first lemma specific to DMR.

Lemma A.25 (MR­Atomicity in one configuration).
If some correct process p completedWrite(v, σ) in C or received v from Read()
operation completed in C strictly before some correct process q invoked Read()
and q completed its operation in C, then the value returned to q is greater than
or equal to v.

Proof. Recall that Read() operation consists of repeated calls to two procedures:
Get() and Set(. . .). If process q successfully completed Set(. . .) in configuration

99

C, then, by the use of forward­secure signatures, configuration C was active
during the execution of Get() that preceded the call to Set. This also means that
configuration C was active during the execution of Set(v, σ) by process p, since
it was before process q started executing its request. By the quorum intersection
property, process q must have received v or a greater value from at least one
correct replica.

Theorem A.26 (MR­Atomicity). The implementation of DMR satisfies the MR­
Atomicity property. If some correct process p completedWrite(v, σ) or received
v from Read() strictly before some correct process q invoked Read(), then the
value returned to q must be greater than or equal to v

Proof. Let C (resp., D) be the highest configuration in p’s (resp., q’s) local
history when it completed its request. Also, let v (resp., u) be the value that p
(resp., q) passed to the last call to Set(. . .) (note that both Read() and Write(. . .)
call Set(. . .)).

If C = D, then u ≥ v by Lemma A.25.
Suppose, for contradiction, that D ⊏ C. Since correct replicas do not reply

to user requests in a configuration until this configuration is installed (Algo­
rithm 7, line 206), configuration C had to be installed before p completed its
request. By Lemma A.23 (Key Update), this would mean that q would not be
able to complete Set(. . .) in D—a contradiction.

The remaining case is when C ⊏ D. In this case, by Lemma A.24, the quo­
rum intersection property, and the use of forward­secure signatures in Set(. . .),
q received v or a greater value from at least one correct replica during the exe­
cution of Get(). Therefore, in this case u is also greater than or equal to v.

TheoremA.27 (DMR safety). The implementation satisfies the safety properties
of DMR: MR­Validity, MR­Atomicity, and Dynamic Validity.

Proof. MR­Validity follows directly from the implementation: correct clients
only return verifiable input values from Get() (Algorithm 6, line 197). MR­
Atomicity follows directly from Theorem A.26. Dynamic Validity follows from
Theorem A.22.

100

DMR liveness.

Lemma A.28 (History Convergence). Local histories of all correct processes
will eventually become identical.

Recall that the maximal installed configuration is the highest installed con­
figuration and is denoted by Cmax (see Definition A.12 and Lemma A.13 in Sec­
tion A.2).

LemmaA.29 (Cmax installation). Themaximal installed configurationwill even­
tually be installed by all correct replicas.

Lemma A.30 (State transfer progress). State transfer executed by a forever­
correct replica always terminates.

LemmaA.31. Cmax will eventually become the highest configuration in the local
history of each correct process.

Theorem A.32 (MR­Liveness). The implementation of DMR satisfies the MR­
Liveness property: every call to Read() and Write(v, σ) by a forever­correct
process eventually returns.

Proof. Let p be a forever­correct client that invoked Read() or Write(. . .). By
Lemma A.16,Cmax will eventually become the highest configuration in the local
history of p. If the client’s request does not terminate by the time the client learns
about Cmax, the client will restart the request in Cmax. Since Cmax will eventually
be installed by all correct replicas and will never be superseded, there will be
a quorum of forever­correct replicas, and p will be able to complete its request
there.

TheoremA.33 (DMR liveness). The implementation satisfies the liveness prop­
erties of DMR: MR­Liveness, Dynamic Liveness, and Installation Liveness.

Proof. MR­Liveness follows from Theorem A.32. Dynamic Liveness and
Installation Liveness follow directly from Lemmas A.31 and A.29 respec­
tively.

101

	Introduction
	Asynchronous Reconfiguration
	Model assumptions
	Processes and channels
	Configuration lattice
	Forward-secure digital signatures

	Reconfiguration examples and challenges
	Reconfiguration example
	The ``I still work here'' attack
	The ``slow reader'' attack

	Abstractions and definitions
	Access control and object composition
	Definition of Byzantine lattice agreement
	Definition of reconfigurable objects
	Definition of dynamic objects
	Quorum system assumptions
	Broadcast primitives

	Dynamic Byzantine Lattice Agreement
	Client implementation
	Replica implementation
	Implementing other dynamic objects

	Reconfigurable objects
	Implementation
	Proof of correctness
	Discussion

	Access control
	Sanity-check approach
	Quorum-based approach (``on-chain governance'')
	Trusted administrators
	Combining Access Control with other objects

	Related work
	Discussions

	Efficient Byzantine Fault-Tolerant Consensus
	Preliminaries
	Model assumptions
	The consensus problem

	Algorithm
	Normal case
	View change
	Proof of consistency
	Generalized version

	Lower bound
	Preliminaries
	Optimality of the proposed algorithm
	Optimality of FaB Paxos

	Related work

	Conclusion
	References
	Reconfiguration Appendix
	Pseudocode for the DBLA implementation
	Correctness proof of the DBLA implementation
	Safety
	Liveness

	Possible optimizations for the DBLA implementation
	Max Register
	Dynamic Max-Register implementation
	Proof of correctness

