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Abstract

I propose a way to formulate and solve for subgame perfect equilibria of continuous-time
repeated games with both observable and unobservable actions. The main idea is that instead of
first defining an extensive-form game in continuous time, one can look directly for self-enforcing
agreements corresponding to the strategic interaction at hand. To discipline players’ observable
deviations, I impose an inertia restriction that makes the deviator stuck with his observable
action for a small amount of time. This restriction simultaneously preserves the tractability of
the model, and ensures that agreements and deviating strategies are well defined.

To illustrate this idea, I consider an example of two cartel members colluding in a continuous-
time repeated setting with imperfectly observable productive actions and observable money
transfers. Money transfers are costly: only a fraction k ă 1 of the money sent is received by
the recipient (with the case k “ 0 corresponding to pure money burning). I introduce the
notion of a self-enforcing public agreement which mimics the notion of a pure-strategy public
perfect equilibrium from discrete time. For a fixed interest rate r ą 0, I characterize the set
of payoffs attainable in self-enforcing public agreements, as well as the dynamics in optimal
ones. Adding the possibility of costly transfers increases the set of attainable payoffs because it
allows the promised continuation values to reflect away from the players’ individual rationality
constraints. In optimal agreements, costly transfers are used rarely and only after extreme
histories when the individual rationality constraint of one of the players binds.
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1 Introduction

Continuous-time models have received extensive attention from economic theorists in the last two
decades. The tractability achieved by studying strategic interactions in continuous time can hardly
be overstated. Sannikov (2008) inspired the literature on continuous-time contracts. In another
paper, Sannikov (2007) formulated repeated games with imperfectly observable actions in continuous
time and developed techniques for finding their pure-strategy public perfect equilibria (p-PPEs). Yet
little progress has been made toward rigorously addressing continuous-time games with observable
actions. Simon and Stinchcombe (1989) pointed out some of the potential problems.

This paper is methodological. I propose a model of a repeated game in continuous time with
both perfectly and imperfectly observable actions, and solve for its p-PPEs. Though I consider only
one specific example, I believe the main idea of the paper can be used quite generally for finding
subgame perfect Nash equilibria of continuous-time games with observable actions. In a companion
paper (Panov (2019)), I discuss this idea in more detail and illustrate how to apply it in a series of
examples from the existing literature.

The main idea of this paper can be described as follows. Consider first the problem of finding
subgame perfect equilibria (SPNEs) for a given strategic interaction in discrete time. There exist
two different methods for doing this. The standard approach is described in the following two steps:

1. Represent the strategic interaction as an extensive-form game: define the players’ strategies,
the outcomes induced by each strategy profile, and the payoffs delivered to the players in each
outcome.

2. For the constructed game, compute all Nash equilibria that satisfy subgame perfection.

The second method was proposed by Abreu (1988). I call it the Abreu approach. Essentially,
the Abreu approach reverses the order of the steps is the standard approach as follows:

1. Consider an agreement that is a collection of an initial outcome and punishment outcomes.
The initial outcome specifies the whole path of play from the beginning, assuming that no-
body makes an observable deviation. For any finite sequence of observed deviations, the cor-
responding punishment outcome specifies the continuation path of play, assuming no further
observable deviations.

2. Given an agreement, define strategies for each player relative to the agreement. A strat-
egy specifies for each outcome the sequence of unobservable actions that may depend on the
player’s history, as well as the rule of when and how to observably deviate from the out-
come. Define the payoff from each strategy relative to the agreement. Call an agreement
self-enforcing if there is no strategy for any player that constitutes a profitable deviation after
some history of play. Finally, find SPNEs by finding all self-enforcing agreements.
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For discrete-time interactions, the two approaches lead to the same answer. Yet the Abreu
approach is often more tractable (for example, in the case of infinitely repeated games).

For continuous-time interactions with observable actions, following the standard approach is
problematic. Indeed, a considerable difficulty appears already at the beginning of the first step: in
continuous time, well defined extensive-form strategies for the players may not determine uniquely
the corresponding outcome.1 The main insight of this paper is that the Abreu approach still works
well for continuous-time models with observable actions. In other words:

The Main Idea: To find subgame perfect equilibria of strategic interactions with observ-
able actions in continuous time, one can use the Abreu approach. That is, rather than
first defining the whole extensive-form game, one can search directly for self-enforcing
agreements corresponding to the interaction.

To illustrate how this idea can be used to deal with continuous-time repeated games with observ-
able actions, I consider the following economic example. Two players collude in a continuous-time
repeated setting. At each point in time, they can choose productive actions. These actions are
imperfectly observable by their effect on the drift of a public Brownian signal. Besides hidden
productive actions, the players are allowed to transfer money to each other. These transfers are in-
stantaneously and perfectly observable. Money transfers are costly: there is an exogenous retention
parameter k P r0, 1q. If at time t, a player sends the opponent γ amount of money, the opponent
immediately receives only kγ, with the remaining p1´kqγ being permanently lost. The limiting case
k “ 1 corresponds to perfect transfers. The motivation to study costly transfers is that in cartels,
perfect transfers may often be infeasible (e.g., legally prohibited). The case k “ 0 corresponds to
pure money burning. In cartels, money burning can be implemented via open charity donations,
for example, or via any other expenditures which are not directly beneficial to the stockholders of
the interacting firms. The intermediate case k P p0, 1q may be implemented, for instance, when a
firm or its subsidiary buys the final product from the competitor or its subsidiary (see Harrington
and Skrzypacz (2007)).

The question then is how the possibility of costly transfers may further help the players to
sustain cooperation. Note that this case is qualitatively quite different from the case of perfect
transfers. When transfers are perfect, one can see already in discrete time that optimal cooperation
can be implemented via stationary equilibria (e.g., Levin (2003), Goldlücke and Kranz (2012)).
When transfers are costly, this result no longer holds. Indeed, the losses associated with transfers
introduce an additional trade-off between providing incentives via transfers today and postponing
the costs of transfers into the future. Thus, it is not optimal to use costly transfers regularly at the

1For instance, consider a one-player situation in which at each time t P r0,8q, the player chooses an action
at P r0, 1s. Now consider the following strategy which recommends an action to the player as a function of the history
of play. At t “ 0, choose a0 “ 0. For all t ą 0, choose at “ supsPr0,tq as. Note that this strategy uniquely determines
what the player should choose after any history of his play. Yet it does not uniquely determine the outcome. Indeed,
any weakly increasing continuous path of actions at with a0 “ 0 would fit the description of this strategy.
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end of each period. Also, as this trade-off breaks the stationarity of optimal cooperation, solving
the model in closed form in discrete time does not seem tractable.

For this continuous-time setting, I study self-enforcing public agreements that correspond to
p-PPEs of discrete-time games. An agreement is called self-enforcing, if there is no strategy for
any player that constitutes a strictly profitable deviation after some history of play. To discipline
observable deviations, I impose a certain inertia restriction. Intuitively, an agreement satisfies
the inertia with parameter ε ą 0 if after an observed deviation, the deviator is stuck with his
deviating action for ε amount of time. This restriction does not seem too severe. For instance, it is
automatically satisfied in any discrete-time model. The exact formulation of the inertia restriction
used in this paper is slightly different from the above for tractability reasons. Yet I believe it
captures the above intuition. Note that such a inertia allows one to simultaneously incorporate
two attractive properties into the model. First, it puts no constraints on the initial path of play.
Thus, it permits solving the model in closed form. Second, it imposes regularity on the structure
of deviations, which is needed for the one-stage deviation principle to apply. The inertia makes it
costly to observably deviate since the deviator suffers a loss in flexibility. Absent any such loss,
it is not clear what would prevent players from deviating arbitrarily often, which would render
agreements ill-defined.

To find the set of payoffs attainable in self-enforcing public agreements as well as the dynamics
in optimal ones, I follow a three-step procedure, which is similar to the cookbook procedure for
determining p-PPEs of repeated games in discrete time:

1. Derive the appropriate Bellman equation characterizing dynamic incentive compatibility.

2. If the game has observable actions, establish the existence of the optimal penal codes.

3. Derive the appropriate Hamilton-Jacobi-Bellman equation characterizing the boundary of the
set of payoffs attainable in self-enforcing agreements.

These three steps correspond to the three main results of the paper.
First, I characterize when a public agreement is self-enforcing. An agreement is self-enforcing if

and only if it satisfies two separate conditions: the One-Stage Deviation in Hidden Actions and the
One-Stage Deviation in Observable Actions. The One-Stage Deviation in Hidden Actions is familiar
from the literature. In fact, it is exactly the incentive compatibility condition from Sannikov (2007)
and it does not contain any money transfers. The One-Stage Deviation in Observable Actions is
also quite familiar. It requires that essentially never, either of the players will find it instantaneously
profitable to publicly deviate in money transfers alone.

Second, I establish the existence of optimal penal codes in my setting. The notion of optimal
penal code was introduced by Abreu (1988). There, an optimal penal code is a tuple of p-SPNEs
of a repeated game that deliver to each player his worst possible p-SPNE payoff. That is, an
optimal penal code implements the harshest possible subgame-perfect punishments for each of the
players. For my second result, I assume that minmaxing each of the players can be locally enforced

4



by shifting promised continuation values. (Recall the notion of enforceability of an action profile
from Fudenberg et al. (1994) and Sannikov (2007).) I show that if for each player, his stage-game
minmaxing profile is enforceable (and under some additional technical restrictions), then there exist
a couple of self-enforcing public agreements that globally deliver the stage-game minmax payoffs
to each of the players. As any self-enforcing agreement must deliver to the players at least their
stage-game minmax payoffs, these two agreements indeed implement the harshest punishments.

Third, I characterize the set of payoffs attainable in self-enforcing public agreements. A pair of
payoffs w is called individually rational if it lies above the players’ pure-strategy minmax payoffs
from the stage game. A subset S of the set of individually rational payoffs is called comprehensive
if, for any point w P S, S also contains all individually rational payoffs that may be obtained from
w by subtracting a positive linear combination of the money-transfer vectors p1,´kq and p´k, 1q.
For a subset of individually rational payoffs, prefix B` denotes the part of the boundary which lies
strictly above the minmax lines of the players. Finally, N denotes the convex hull of pure-strategy
Nash equilibria (p-NEs) payoffs of the stage game. My third result states that for any k P r0, 1q, and
for any fixed interest rate r ą 0, whenever an optimal penal code exists, the set K of the payoffs
attainable in self-enforcing agreements is precisely the largest convex bounded subset of the set of
individually rational payoffs such that (1) K is comprehensive; (2) the boundary of K satisfies the
optimality equation of Sannikov (2007) at any point w P B`KzN ; and (3) B`K enters the minmax
line of Player i, i “ 1, 2, either at a p-NE payoff or tangent to the corresponding money-transfer
vector, namely, p1,´kq for Player 1 and p´k, 1q for Player 2.

The rest of the paper is organized as follows. In section 1.1, I briefly discuss my contributions
to the existing literature. In section 2, I introduce the model and provide main definitions. In
section 3, I present the main results. In section 4, I describe the dynamics in optimal self-enforcing
agreements and consider the cases of fixed-cost and perfect transfers.

1.1 Related Literature

This paper contributes to the existing literature in at least three ways.
First, it adds to the body of work on subgame perfect equilibria of infinitely repeated games. On

the one hand, Abreu et al. (1986) propose an algorithm for computing SPNE payoffs of repeated
games with imperfectly observable actions in discrete time. Fudenberg et al. (1994) further the
understanding of the provision of incentives in such games. Finally, Sannikov (2007) advances
the study of the equilibria of such games (at least in the two-player case) by setting them up in
continuous time and characterizing in closed form the set of their equilibria payoffs, the optimal
provision of incentive, and the dynamics in optimal equilibria. On the other hand, Abreu (1988)
develops a method for studying infinitely repeated games with observable actions in discrete time.
The current paper makes an effort to combine the techniques of Sannikov (2007) and Abreu (1988) in
order to formulate and solve for equilibria of repeated games in continuous time with both perfectly
and imperfectly observable actions.

Second, the paper adds to the literature on continuous-time games with observable actions.
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Simon and Stinchcombe (1989) provide a discussion of potential technical issues in modeling such
games. To resolve these issues, they propose to look at continuous-time strategies as limits of
discrete-time strategies for increasingly finer grids. Doing so effectively makes working in continuous
time no more attractive than in discrete. Moreover, they impose that players can change their
actions only finitely many times. Thus, their method can not apply to the repeated games studied
in this paper. Bergin and MacLeod (1993) formulate players’ strategies directly in continuous
time. They impose a certain inertia restriction on these strategies, which is much less restrictive
than the assumptions of Simon and Stinchcombe (1989). However, in Bergin and MacLeod (1993),
strategies are indistinguishable if they are the same at almost all times. In particular, their model
treats a strategy that prescribes no deviations at all as the same as a strategy that prescribes one
observable deviation. Thus, it is questionable whether their model properly accounts for the problem
of information in extensive form. In comparison with the current paper, Bergin and MacLeod
(1993)’s inertia requires that, stated intuitively, once a player chooses an action, he is stuck with
it for a short time. In this paper, the inertia requires that once a player observably deviates from
the currently effective outcome, he becomes stuck with his deviating action for a short time. On
the one hand, my inertia is more restrictive: I require that the amount of time for which deviators
are stuck with their actions is fixed for the whole agreement, whereas Bergin and MacLeod (1993)
allow this time to be different after different histories. On the other hand, my inertia is less harsh
in that it applies only to deviations from the agreement’s outcomes. In particular, in my model the
initial path of play is not restricted by the inertia. This grants my model substantial tractability.

In recent years, several papers have tried to incorporate observable actions into continuous-time
models. The closest to the current paper is Jiang and Zhang (2019), in which they consider a version
of the model that I use with a specific stage game and signal structure. The optimal path of play they
suggest coincides with the optimal path found in the current paper. The main difference, however,
is that Jiang and Zhang (2019) seem to analyze the model in reduced form without addressing the
issues of modeling continuous-time games with observable actions. Hackbarth and Taub (2019)
consider a version of the model in Sannikov (2007) in which the players can mutually agree on an
exogenous exit option, with this decision being observable. However, their paper does not seem
to address the problem of observable actions either. There is also a line of work on durable good
monopoly and bargaining in continuous time; see Ortner (2017), Ortner (2019), Chavez (2019),
Daly and Green (2018). These authors do acknowledge the issues in modeling observable actions
in continuous time. Instead of setting up their games in continuous time completely, they look for
stationary outcomes that satisfy certain properties of equilibria of the corresponding discrete-time
models.

Finally, by covering the intermediate case, this paper bridges the gap between (i) research on
repeated games without transfers, and (ii) research on repeated games with perfect transfers (Fong
and Surti (2009), Goldlücke and Kranz (2012), Goldlücke and Kranz (2013) ) and relational contracts
(Baker et al. (2002), Levin (2003), Rayo (2007)).
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2 Model

In this section, I introduce and discuss the main ingredients of the model.

2.1 Basic Setup

The model builds upon the model of continuous-time two-player repeated games with imperfect
public monitoring studied in Sannikov (2007).

Two players repeatedly interact in continuous time. At each time t P r0,8q, Player i takes a
productive action Ait from a finite set Ai. These productive actions At “ pA1

t , A
2
t q are imperfectly

observable by their effect on the evolution of a d-dimensional public-signal process Xt,

Xt “

t
ż

0

µpAsq ds` Zt,

where Zt is a d-dimensional Brownian motion and µ : A1ˆA2 Ñ Rd is a drift function. The arrival
of public information is captured by an exogenously given filtration tFtutě0.

The new feature in my model is that besides the possibility of taking imperfectly-observable
productive actions, the players possess an exogenously given technology that allows them to publicly
transfer money between each other. Specifically, there is an exogenously given retention parameter
k P r0, 1q characterizing how efficient these transfers are. If at time t, Player i sends the opponent
amount dΓit ą 0, then the opponent receives only k ¨ dΓit, with the remaining p1 ´ kq ¨ dΓit being
permanently lost. Denote through Γit the cumulative process of transfers sent by Player i until
time t inclusive.

Suppose that during the play of this interaction, the players take a profile of unobservable actions
pA1

t , A
2
t qttě0u and a profile of cumulative public transfers pΓ1

t ,Γ
2
t qttě0u. (In what follows, I will always

restrict attention to such profiles that pA1
t , A

2
t qttě0u are progressively measurable and pΓ1

t ,Γ
2
t qttě0u

are weakly-increasing nonnegative RCLL-processes adapted to tFtutě0.) Player i’s random total
discounted payoff under the play of this profile is

r

8
ż

0

e´rt
`

cipA
i
tqdt` bipA

i
tqdXt ´ dΓit ` kdΓ´it

˘

´ rΓi0 ` rkΓ´i0 ,

for some functions ci : Ai Ñ R and bi : Ai Ñ Rd, where r ą 0 denotes the common discount rate of
the players.

Denote

gipAtq “ cipA
i
tq ` bipA

i
tqµpAtq.

Player i’s continuation payoff expected at time t given continuation profile pA,Γqtsětu “ pA1
s, A

2
s,Γ

1
s,Γ

2
sqtsětu

then can be written as
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W i
t pA,Γq “ Et

”

r

8
ż

t

e´rps´tq
`

gipAsq ´ dΓis ` kdΓ´is
˘

´ r∆Γit ` rk∆Γ´it |As, s ě t
ı

,

where ∆Γt “ Γt ´ Γt´ if t ą 0 and ∆Γ0 “ Γ0.

2.2 Outcomes

In this subsection, I define public outcomes, from which I eventually will build public agreements.
Within an agreement, an outcome Q describes the recommended continuation path of play

starting immediately after the last observed deviation from the previously effective outcome. In
particular, Q contains a filtered probability space pΩQ,FQ, tFQt utě0,PQq capturing the arrival of
public information after the last observed deviation. This information includes the evolution of a d-
dimensional public signal XQ

t and, possibly, the realizations of independent public randomizations.
Further, Q specifies a profile

´

A1,Q, A2,Q
¯

of recommended hidden actions progressively measurable

with respect to tFQt utě0, and recommended cumulative money-transfer processes pΓ1,Q,Γ2,Qq, which
are weakly-increasing nonnegative RCLL-processes adapted to tFQt utě0. The measure PQ agrees

with the profile of recommended hidden actions in such a way that the process XQ
t ´

t
ş

0

µpAQs q ds is

a standard d-dimensional Brownian motion under PQ.
More formally, the public information for outcome Q is constructed in the following way:

Definition (Public Information). For an outcome Q, the public information PQ is a filtered prob-
ability space pΩQ,FQ, tFQt utě0,PQq, which is constructed as follows:

1. Take a filtered probability space P0 “ pΩ0,F0, tF0
t utě0,P0q to be used for public randomization

(take this space rich enough so that F0 includes the realization of a random variable distributed
U r0, 1s).

2. Take a standard d-dimensional Brownian motion Xt on a filtered probability space PX .

3. Take the direct product P “ pΩ,F , tFtutě0,Pq of the above filtered probability spaces:

P “ P0 b PX .

4. Set ΩQ “ Ω.

5. Take a profile
´

A1,Q, A2,Q
¯

of recommended hidden actions (which can be any progressively
measurable process of hidden actions on P).

6. Using Girsanov’s theorem, construct the measure PQ on pΩQ,F , tFtutě0q so that XQ
t ´

t
ş

0

µpAQs q ds is a d-dimensional Brownian motion under PQ.

7. Finally, define pFQ, tFQt utě0q as the right-continuous augmentation of pF , tFtutě0q under PQ.
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I will say that public information pΩQ,FQ, tFQt utě0,PQq agrees with profile
´

A1,Q, A2,Q
¯

of

hidden actions if this information is constructed using
´

A1,Q, A2,Q
¯

.2

Besides recommended hidden actions, outcome Q also specifies recommended money-transfer
processes pΓ1,Q,Γ2,Qq. I restrict pΓ1,Q,Γ2,Qq to be weakly-increasing nonnegative adapted RCCL-
processes on pΩQ,FQ, tFQt utě0,PQq. Further, I require that processes pΓ1,Q,Γ2,Qq beM -nonmanipulable
for some M ą 0 as defined below:

Definition (Well Bounded Process). Given a filtered probability space pΩ,F , tFtutě0,Pq, a weakly-
increasing nonnegative adapted RCLL-process Γt is said to be well bounded by M ą 0 if for any
finite tFtutě0-stopping time T ,

EP
”

8
ż

T

e´rps´T qdΓs `∆ΓT

ˇ

ˇ

ˇ
FT

ı

ďM pFT ,Pq-a.s.

Definition (M -Nonmanipulable Processes). Given public information pΩQ,FQ, tFQt utě0,PQq that
agrees with profile

´

A1,Q, A2,Q
¯

of recommended hidden actions, a weakly-increasing nonnegative
adapted RCLL-process Γt is said to be M -nonmanipulable for some M ą 0 if for each Player i,
i “ 1, 2, and for any progressively measurable process Ãi of hidden actions for Player i, the process
Γt is well bounded by M under the measure PpÃi, A´i,Qq which is obtained from PQ by changing
Ai,Q to Ãi.

M -nonmanipulability of Γ´i, the money-transfer process for Player ´i recommended by outcome
Q, guarantees that Player i would not be able to “jam” the public signal by changing his hidden
actions so that to make the opponent transfer him in expectation infinite amount of money.

I am now ready to introduce the formal definition of public outcome, which will be the main
building block in the construction of public agreements in the next subsection.

Definition (Outcome). A public outcome Q “ tPQ, AQ,ΓQu is public information PQ together with
recommended processes of hidden actions

´

A1,Q, A2,Q
¯

and cumulative money transfers pΓ1,Q,Γ2,Qq

such that

1.
´

A1,Q, A2,Q
¯

are progressively measurable and agree with PQ;

2. pΓ1,Q,Γ2,Qq are weakly-increasing nonnegative adapted RCLL-processes M -nonnmanipulable
for some M ą 0;

Note that whenever a certain outcome becomes effective during the play, the clock is completely
restarted: the time is set to t “ 0 and the public information begins anew.

2Recommended hidden actions are included into the construction of public information for a purely technical
reason. With infinite horizon, the hidden-action processes affect which events become measure zero. Thus, the
augmentation in the last step of the construction depends of the recommended hidden actions. The augmentation is
needed, for example, to apply the Martingale Representation Theorem in the proof of Proposition 1.
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2.3 Public Agreements

Having introduced the concept of an outcome in the previous subsection, I am ready to define public
agreements, one of the main concepts in the paper. A public agreement is a collection of public out-
comes. An agreement proposes to start with some initial outcome Q0. It also specifies punishment
outcomes suggesting the continuation play after any finite sequence of observed deviations. Below
I introduce an important inertia restriction. Intuitively, it is the restriction on how frequently the
players are allowed to publicly deviate from the outcomes in an agreement. The inertia guarantees
that after essentially any finite history during the play of an agreement, there will be only finitely
many observed deviations. In particular, this means that agreements will be well defined: an agree-
ment will be recommending a well-defined continuation play after any finite history possible under
the play of that agreement.

Within each outcome of an agreement, I restrict that the players are only allowed to publicly
deviate at times when they are prescribed to send the opponents positive transfers, at permissible
times of public deviations.

Definition (Permissible time of the public Deviation). Given an outcome Q “ tPQ, AQ,ΓQu,
an tFQt utě0-stopping time T is a permissible time of the public deviation for Player i if Player i is
supposed to send positive amount of money at T . That is T ă 8 implies that Γi,QT is right-increasing
at T or that Γi,Q0 ą 0 and T “ 0.

An agreement contains an initial outcome and outcomes specifying punishments after observed
public deviations. Fix small ε ą 0, the parameter of the inertia. The following is the restriction on
punishment outcomes that can be employed in an agreement with inertia parameter ε:

Inertia Restriction. If Q “ tPQ, AQ,ΓQu is a punishment outcome of an agreement with inertia
parameter ε ą 0, then Q must specify that at the beginning, no player sends positive transfers at
least until the first time the public signal moves by ε or until ε amount of time elapses,

ΓQτ´ “ p0, 0q, where τ “ mintt : |XQ
t | “ εu ^ ε.

The inertia together with when public deviations are permitted amounts to the following three
restrictions on agreements:

1. any deviations in money transfers are ignored if the deviating player is supposed to send zero;

2. the only deviations in money transfers that are considered are to send zero;

3. if a player observably deviates, he is stuck with his deviation for a positive amount of time.

Restrictions 1 and 2 can be shown to be without loss of generality (similar to Abreu (1988)).
I introduce them only as a simplification. Restriction 3 is the main restriction. This restriction
is automatically satisfied in any discrete-time model. In this continuous-time setting, I impose it
directly. Also, the inertia is made sensitive to large moves of the public signal. For a Brownian
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signal, such moves can happen very quickly with small probability. The sensitivity ensures that
the boundary of the payoff set for self-enforcing agreements is easy to characterize and that it does
not depend on sufficiently small inertia parameters. For a more detailed discussion of the inertia
restriction please refer to Panov (2019).

I am now ready to provide the formal construction of public agreements.

Definition (Public Agreement). A public agreement E with inertia parameter ε ą 0 is a collection
of public outcomes which is constructed in the following steps:

1. E specifies the initial outcome Q0;

2. given Q0, E specifies all punishment outcomes of level-1, the punishment outcomes after the
first observed deviation by Player 1 or Player 2 for all permissible times of public deviations
for these players in Q0;

3. for each punishment outcome Q1 of level-1, E specifies all punishment outcomes of level-2
following Q1, the punishment outcomes after the second observed deviation by Player 1 or
Player 2 for all permissible times of public deviations for these players in Q1;

4. for each punishment outcome Q2 of level-2, E specifies all punishment outcomes of level-
3 following Q2, the punishment outcomes after the third observed deviation by Player 1 or
Player 2 for all permissible times of public deviations for these players in Q2;

5. and so on...

Additionally, there must exist a uniform bound M ą 0 such that for all outcomes in E, the
recommended money-transfer processes are M -nonmanipulable. Pieces of public information from
different outcomes in E are treated as independent of each other.

Pure public strategies for the players are defined only against a given public agreement.

Definition (Pure Public Strategy). Given a public agreement E with inertia parameter ε ą 0, a
pure public strategy σ for Player i is a collection of separate rules σQ prescribing the behavior in
each outcome Q from E. Each σQ consist of

1. Ai,Q,σ, a process of hidden actions for Player i progressively measurable given the public filtra-
tion tFQt utě0;

2. An tFQt utě0-stopping time T i,Q,σ prescribing the moment at which Player i announces his
public deviation from Q. The stopping time T i,Q,σ is restricted to be a permissible time of
public deviation for Player i.

SipEq denotes the set of all pure public strategies for Player i against agreement E.
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During the play of an agreement, there is always exactly one currently effective outcome recom-
mending the continuation play to the players. The outcome remains effective until the first time T
at which either player (possibly both) publicly deviates. A public deviation at time T pωq causes the
instantaneous hold on money transfers, i.e., sets ∆Γ1

T pωq “ ∆Γ2
T pωq “ 0. Also, the deviation makes

the continuation play switch to the new effective outcome, the corresponding punishment outcome
prescribed in the agreement.

Suppose that given an agreement E with inertia parameter ε ą 0, the players decide to play a
profile of pure public strategies pσ1, σ2q. Because of the inertia restriction and the fact that public
deviations are only permissible at times when the deviating player is supposed to send positive
amount of money, for any finite time t ą 0, “with probability 1,” there will be only finitely many
public deviations observed by time t. Indeed, if there is a finite history such that the players have
deviated infinitely many times until time t, then infinitely many times along this history, the public
deviations became possible by an ε-jump of then effective public signal XQ. But there exist c ą 0

such that for any outcome Q and any hidden action profile of the players, ε-jump of XQ before time
ε happens with probability less than 1´ c. As public signals across different outcomes are treated
as independent, the probability that infinitely many such jumps happened before time t then is at
most p1´ cq8 “ 0. Therefore, E correctly determines the proposed continuation play for essentially
any finite public history arising from the play of any pure public strategy profile.

2.4 Promised Continuation Values

I now specify the continuation values promised under the play of a public agreement. As usual,
these continuation values are computed assuming that nobody further deviates from the currently
proposed path of play.

Suppose the players are playing against an agreement E and after some history, an outcome
Q (either initial or punishment) is effective. Within Q, one can define the process of promised
continuation values as the discounted sum of future stage-game payoffs and net money transfers
evaluated at time t ě 0, similarly to how it is done in Sannikov (2007). Specifically, at time t after
the start of Q, Player i’s promised continuation value is

W i,Q
t “ EPQ

t

”

r

8
ż

t

e´rps´tq
`

gipA
Q
s qds´ dΓi,Qs ` k dΓ´i,Qs

˘

´ r∆Γi,Qt ` rk∆Γ´i,Qt

ˇ

ˇ

ˇ
FQt

ı

.

The boundedness of the stage-game payoffs and the well boundedness of the money-transfer
processes ensures that one can always find a bounded modification for W i,Q

t . Note that W i,Q
t is a

random variable. I do not attach any game-theoretic meaning to it. I will only useW i,Q
t throughout

derivations. The only continuation value to which I actually attach a game-theoretic meaning and
do interpret it as the value from the outcome as assessed by the player is W i,Q, the unconditional
expectation of W i,Q

0 computed at the very beginning of Q:
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W i,Q :“ EPQ
”

W i,Q
0

ı

.

Given an agreement E with the initial outcome Q0, define the expected payoff W i,E promised by
E to Player i as

W i,E :“W i,Q0 .

The following is a straightforward adaptation of Proposition 1 from Sannikov (2007) to the
current setting:

Proposition 1. (Representation and Promise Keeping) A bounded stochastic process W i
t is the

process of promised continuation values W i,Q
t of Player i in outcome Q if and only if there exist

processes βi,Q “ pβi1,Q, ..., βid,Qq in L˚pPQq and a martingale ε̃i,Q on PQ orthogonal to XQ with
ε̃i,Q0 “ 0 such that for all t ą 0, W i

t satisfies

W i
t “W i

0 ` r

t
ż

0

`

W i
s ´ gipA

Q
s q
˘

ds` r
´

Γi,Q0 `

t
ż

0

dΓi,Qs

¯

´ r
´

kΓ´i,Q0 `

t
ż

0

kdΓ´i,Qs

¯

`

` r

t
ż

0

βi,Qs
`

dXQ
s ´ µpA

Q
s qds

˘

` ε̃i,Qt . (1)

The proof of Proposition 1 is almost identical to the proof of Proposition 1 from Sannikov (2007)
and is left to the reader.

The shorthand form for representation (1) is

dW i,Q
t “ r

`

W i,Q
t ´ gipA

Q
t q
˘

dt` rdΓi,Qt ´ rkdΓ´i,Qt ` βi,Qt
`

dXQ
t ´ µpA

Q
t qdt

˘

` dε̃i,Qt . (2)

Comparing to Sannikov (2007), the new terms in equation (2) are rdΓi,Qt and p´rkdΓ´i,Qt q.
Intuitively, if at time t, a player sends the opponent G dollars, then his promised continuation value
at the very next moment must go up by rG so as to precisely compensate him. At the same time,
the opponent’s continuation value must go down by rkG to reflect the receipt of the transfer. The
new terms capture exactly this intuition.

2.5 The Value of a Strategy

My next task is to define the value of a strategy for a player. Suppose the players are playing against
an agreement E . Take Player i and a pure public strategy σ for him. What can be the value of σ
evaluated at the beginning of some outcome Q from E?

Suppose σ prescribes no public deviations from Q. That is, the stopping time of the deviation

13



T i,Q is `8 everywhere. Naturally, one can compute the continuation value of σ at the beginning
of Q as the expected discounted sum of payoffs along Q,

V pσ,Qq :“ EPpAi,Q,σ ,A´i,Qq
”

r

8
ż

0

e´rs
`

gipA
i,Q,σ
s , A´i,Qs qds´ dΓi,Qs ` k dΓ´i,Qs

˘

´ rΓi,Q0 ` rkΓ´i,Q0

ı

,

where PpAi,Q,σ, A´i,Qq is the measure induced in PQ by the profile of hidden actions pAi,Q,σ, A´i,Qq.
Suppose now that starting from Q, σ prescribes at most one public deviation. Denote by Q̃

`

T, ω
˘

the punishment outcome specified by E after Player i publicly deviates from Q in state ω at time T .
Naturally, one can define the continuation value of σ after this deviation as V

`

σ, Q̃pT, ωq
˘

. What
about the value of σ evaluated at the beginning of Q? Naively, one might want to write it down as

V pσ,Qq “ EPpAi,Q,σ ,A´i,Qq
”

r

T i,Q
ż

0

e´rs
`

gipA
i,Q,σ
s , A´i,Qs qds´dΓi,Qs `k dΓ´i,Qs

˘

´rΓi,Q0 `rkΓ´i,Q0

ı

`

` EPpAi,Q,σ ,A´i,Qq
”

e´rT
i,Q

´

V
`

σ, Q̃pT i,Q, ωq
˘

` r∆Γi,Q
T i,Q

´ rk∆Γ´i,Q
T i,Q

¯ı

. (3)

Unfortunately, the second term in the above expression is not well defined generally because
V
`

σ, Q̃pT i,Q, ωq
˘

is not necessarily a random variable. Thus, the value of such a strategy can not
be directly assessed from the point of view of a player, who at stopping time T i,Q, only observes
the stopped σ-algebra FQ

T i,Q
. Because of that, instead of assigning the precise value to V pσ,Qq, let

us assign the upper bound for this value, V ˚pσ,Qq, and the lower bound for this value, V˚pσ,Qq,
by using correspondingly the upper and the lower integrals relative to FQ

T i,Q
for the second term in

(3). Formally,

V ˚pσ,Qq :“ EPpAi,Q,σ ,A´i,Qq
”

r

T i,Q
ż

0

e´rs
`

gipA
i,Q,σ
s , A´i,Qs qds´dΓi,Qs `k dΓ´i,Qs

˘

´rΓi,Q0 `rkΓ´i,Q0

ı

`

`

´

EPpAi,Q,σ ,A´i,Qq
¯˚”

e´rT
i,Q

´

V
`

σ, Q̃pT i,Q, ωq
˘

` r∆Γi,Q
T i,Q

´ rk∆Γ´i,Q
T i,Q

¯ı

and

V˚pσ,Qq :“ EPpAi,Q,σ ,A´i,Qq
”

r

T i,Q
ż

0

e´rs
`

gipA
i,Q,σ
s , A´i,Qs qds´dΓi,Qs `k dΓ´i,Qs

˘

´rΓi,Q0 `rkΓ´i,Q0

ı

`

`

´

EPpAi,Q,σ ,A´i,Qq
¯

˚

”

e´rT
i,Q

´

V
`

σ, Q̃pT i,Q, ωq
˘

` r∆Γi,Q
T i,Q

´ rk∆Γ´i,Q
T i,Q

¯ı

,
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where
´

EP
¯˚

and
´

EP
¯

˚
denote the upper and the lower integrals relative to FQ

T i,Q
.3

Next, for any strategy σ prescribing finitely many observable deviations, define the upper and
the lower bounds on its value recursively as

V ˚pσ,Qq :“ EPpAi,Q,σ ,A´i,Qq
”

r

T i,Q
ż

0

e´rs
`

gipA
i,Q,σ
s , A´i,Qs qds´dΓi,Qs `k dΓ´i,Qs

˘

´rΓi,Q0 `rkΓ´i,Q0

ı

`

`

´

EPpAi,Q,σ ,A´i,Qq
¯˚”

e´rT
i,Q

´

V ˚
`

σ, Q̃pT i,Q, ωq
˘

` r∆Γi,Q
T i,Q

´ rk∆Γ´i,Q
T i,Q

¯ı

and

V˚pσ,Qq :“ EPpAi,Q,σ ,A´i,Qq
”

r

T i,Q
ż

0

e´rs
`

gipA
i,Q,σ
s , A´i,Qs qds´dΓi,Qs `k dΓ´i,Qs

˘

´rΓi,Q0 `rkΓ´i,Q0

ı

`

`

´

EPpAi,Q,σ ,A´i,Qq
¯

˚

”

e´rT
i,Q

´

V˚
`

σ, Q̃pT i,Q, ωq
˘

` r∆Γi,Q
T i,Q

´ rk∆Γ´i,Q
T i,Q

¯ı

.

Finally, for a strategy prescribing arbitrary many observable deviations, define the upper and
the lower bounds on its value as

V ˚pσ,Qq :“ lim sup
NÑ8

V ˚pσN , Qq,

V˚pσ,Qq :“ lim inf
NÑ8

V˚pσN , Qq,

where σN is the N -th truncation of σ. That is, σN coincides with σ until the N -th public deviation
by Player i and follows the actions recommended by the agreement ever after.

The last step is a crucial one and needs to be justified. Indeed, as N Ñ 8, because of the
inertia restriction on how frequently the players can publicly deviate, the strategies σ and σN are
different either in the event with vanishingly small probability or after the time horizon going to 8.
As the payoffs in the stage game are bounded and all money-transfer processes in E are uniformly
M -nonmanipulable for some M ą 0, this difference can be effectively ignored in the limit. For the
same reason, lim sup and lim inf in the above definitions can be replaced with the usual limits.

3For a function f : Ω Ñ R and a σ-algebra F , define the upper and the lower integrals of f relative to F as
´

EP
¯˚

pfq :“ inf
g is F-measurable
@ωPΩ,gpωqěfpωq

EP
pgq and

´

EP
¯

˚
pfq :“ sup

g is F-measurable
@ωPΩ,gpωqďfpωq

EP
pgq.

Naturally,
´

EP
¯˚

pfq ě
´

EP
¯

˚
pfq. Also,

´

EP
¯˚

pfq “
´

EP
¯

˚
pfq P p´8,`8q if and only if f is F-measurable

and integrable, in which case EP
pfq “

´

EP
¯˚

pfq “
´

EP
¯

˚
pfq.

15



3 Main Results

In this section, I establish three main results of the paper: the characterization of self-enforcing
agreements through a one-stage deviation principle; the existence of optimal penal codes; and the
characterization of the set of payoffs attainable in self-enforcing agreements.

3.1 Self-Enforcing Public Agreements

The main concept in my paper is that of a self-enforcing public agreement, which is defined as
following:

Definition (Self-Enforcing Public Agreement). A public agreement E is called self-enforcing if for
each of its outcomes Q P E, no player can find a pure public strategy with the upper bound on the
value higher than the promised continuation value when evaluated at the beginning of Q,

@Q P E , @i “ 1, 2 ,@σ P SipEq, V ˚pσ,Qq ďW i,Q.

The following measurability restriction is a technical restriction on selecting different punishment
outcomes in public agreements:

Definition (Measurable Public Agreement). A public agreement E is called measurable if for any
outcome Q P E, any Player i, and any permissible time of the public deviation T for Player i, the
promised continuation value W i,Q̃pT q in the resulting punishment is an FQT -random variable.

Recall representation (1) for promised continuation values given in Proposition 1. The following
theorem is the first main result of the paper:

Theorem 1 (One-Stage Deviation Principle). Let E be a public agreement. Consider the following
restrictions:

1. (One-Stage Deviation in Hidden Actions)

For each outcome Q P E, and for any T P p0,8q, the inequalities

@i “ 1, 2, @a1i P Ai, gipA
Q
t q ` β

i
tµpA

Q
t q ě gipa

1
i, A

´i,Q
t q ` βitµpa

1
i, A

´i,Q
t q

are satisfied pFT ,PQ b λr0, T sq-almost surely on ΩQ ˆ r0, T s, where λr0, T s is the standard
Lebesgue measure on r0, T s.

2. (One-Stage Deviation in Observable Actions)

For each outcome Q P E, for each i “ 1, 2, and for any tFQt utě0-stopping time T that is a
permissible time of the public deviation to Player i, the instantaneous gain for Player i from
disrupting the money transfers and going to the punishment outcome Q̃pT, ωq is nonpositive
pFT ,PQq-almost surely,
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W i,Q
T ěW i,Q̃pT,ωq ` r∆Γi,QT ´ rk∆Γ´i,QT pFT ,PQq-a.s.

Then:

• (Sufficiency) If E satisfies restrictions 1 and 2, it is self-enforcing.

• (Necessity of 1) If E does not satisfy restriction 1, it is not self-enforcing. Moreover, there
exists an outcome Q P E and a strategy σ for some Player i such that

V ˚pσ,Qq “ V˚pσ,Qq ąW i,Q.

• (Necessity of 2) If E does not satisfy restriction 2, it is not self-enforcing. Moreover, if E is
measurable, then there exists an outcome Q P E and a strategy σ for some Player i such that

V ˚pσ,Qq “ V˚pσ,Qq ąW i,Q.

Proof. See Appendix A.

Theorem 1 provides necessary and sufficient conditions for a public agreement to be self-
enforcing: a public agreement is self-enforcing if and only if it satisfies the One-Stage Deviation
in both hidden and observable actions.

Recall that for an agreement to be self-enforcing, there should be no deviating strategy for
either of the players, with the upper bound on the value, rather than the expected value, higher
than the value promised by the agreement. This may seem too restrictive. Fortunately, Theorem 1
also establishes that for measurable agreements, this restriction is without loss: if a measurable
agreement is not self-enforcing, then there exists a deviating strategy for some player that is a
strictly profitable deviation in the sense of the usual expected values. If one wishes, they can restrict
attention only to measurable agreements without eliminating any of the supportable outcomes.
Indeed, in the next subsection, I consider the optimal penal codes that are pairs of measurable
agreements. Any outcome of a self-enforcing agreement can also be supported as an outcome of a
self-enforcing agreement with the punishments from an optimal penal code. Thus, any outcome of a
self-enforcing agreement can be supported as an outcome of a measurable self-enforcing agreement.

3.2 Optimal Penal Codes

I now turn to the problem of constructing optimal punishments in self-enforcing agreements. Abreu
(1988) proves the existence of the optimal penal codes in his discrete-time setting. There, an optimal
penal code is a pair of punishment outcomes Q1 and Q2, which punish observable deviations by
Player 1 and Player 2 correspondingly, such that using them alone, one can construct two p-SPNE’s,
E1 and E2, delivering the worst possible p-SPNE payoffs to Player 1 and to Player 2. In this
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subsection, I prove an analogous result for self-enforcing public agreements in my continuous-time
setting under some additional restrictions.

Denote by Kpεq the set of payoffs attainable in self-enforcing public agreements with inertia
parameter ε ą 0. The next lemma shows that the sets Kpεq are decreasing in ε.

Lemma 1 (Monotonicity). For any ε1 ą ε2 ą 0,

Kpε1q Ď Kpε2q.

Proof. See Appendix B.1.

Consider the stage game G in hidden actions played by the players in the current setting. The
set of players is N “ t1, 2u, the set of actions for Player i is Ai, the payoff functions are gi,

G “
 

N, pAiqiPN , pgiqiPN
(

.

Denote by vi the pure-strategy minmax payoff of Player i in G,

vi “ min
a´iPA´i

max
aiPAi

gipai, a´iq.

A profile of pure actions that delivers to Player i his mixmax payoff is called a profile minmaxing
Player i. The minmax line for Player i is the straight line in the space of players’ payoffs pw1, w2q P

R2 given by the equation wi “ vi. The pure-strategy minmax payoff of a player can be interpreted
as the player’s individual rationality constraint against any pure action of the opponent in the stage
game. In my repeated setting, I still can interpret it as the player’s individual rationality constraint,
the per-period average expected payoff that can be guaranteed by the player against any process of
pure hidden actions and money transfers of the opponent. To guarantee this payoff, the player should
simply never transfer any money to the opponent and always keep playing the myopic best-response
hidden action against the current hidden action of the opponent. The following lemma establishes
that any self-enforcing agreement must deliver to both players individually rational payoffs:

Lemma 2 (Individual Rationality). Any self-enforcing agreement E delivers to each Player i the
expected payoff at least as high as his minmax payoff in the stage game G,

W i,E ě vi.

Moreover, for any outcome Q P E, and for any stopping time τ , not necessary a permissible time
of the public deviation for Player i,

W i,Q
τ ě vi ` r∆Γi,Qτ ´ rk∆Γ´i,Qτ PQ-a.s.

Proof. See Appendix B.2.
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Lemma 2 establishes that the worst payoffs deliverable to the players in self-enforcing agree-
ments must be at least their static minmax payoffs. One can ask whether there exist self-enforcing
agreements for each of the players that deliver them precisely this lower bound. I answer this in
the affirmative under several additional assumptions. Specifically, in the remainder of the paper, I
assume that:

Assumption 1. There exists ε0 ą 0 and pw1, w2q P Kpε0q such that w1 ą v1 and w2 ą v2.

Assumption 1 is guaranteed to be satisfied if there is a p-NE of the stage game with higher than
minmax payoffs or if the set of p-PPEs from Sannikov (2007) has nonempty interior.

Recall the definitions of enforceable action profiles and enforceability along hyperplanes from
Fudenberg et al. (1994) and Sannikov (2007):

Definition. A 2ˆ d matrix

B “

«

β1

β2

ff

“

«

β11 ... β1d

β21 ... β2d

ff

enforces action profile a P A if for i “ 1, 2,

@a1i P Ai, gipaq ` β
iµpaq ě gipa

1
i, a´iq ` β

iµpa1i, a´iq.

An action profile a P A is enforceable if there exists some matrix B that enforces it.

Definition. A vector of volatilities φ P Rd enforces action profile a P A along vector T “ pt1, t2q if
the matrix

B “ TJφ “

«

t1φ1 ... t1φd

t2φ1 ... t2φd

ff

enforces a. Of all vectors φ that enforce a along T, let φpa,Tq be the one with the smallest length.

Naturally, any p-NE profile a is enforceable with φpa,Tq “ p0, 0q for any T.
Consider further the following assumptions:

Assumption 2. All action profiles pa1, a2q P A1 ˆ A2 of the stage game are pairwise identifiable,
i.e., the spans of the d ˆ p|A1| ´ 1q matrix M1paq with columns µpa11, a2q ´ µpaq, a11 ‰ a1 and the
dˆ p|A2| ´ 1q matrix M2paq with columns µpa1, a

1
2q ´ µpaq, a

1
2 ‰ a2 intersect only at the origin.

Assumption 3. Either

1. for all i “ 1, 2 and ai P Ai, the static best response to ai is unique or

2. for all a P A, the spans of M1paq and M2paq are orthogonal.

Assumption 4. For each player, at least one of the profiles minmaxing him is enforceable.

19



Assumptions 2 and 3 are precisely the assumptions used in Sannikov (2007). In particular, these
assumptions guarantee that an enforceable action profile is enforceable along all regular vectors.
Moreover, an enforceable action profile a is enforceable along vector T with ti “ 0 if and only if ai
is a best response to a´i in the stage game G. Assumption 4 is a new and the most crucial one. It
requires that at least locally, one can provide incentives via shift in promised continuation values
to each of the players to minmax his opponent. Still this restriction is much weaker than requiring
that minmaxing can be incentivized forever.

Consider any two punishment outcomes Q1 and Q2 satisfying the inertia restriction for some
parameter ε ą 0. Define the two agreements E1pQ1, Q2q and E2pQ1, Q2q, constructed from Q1 and
Q2, as follows:

• E1pQ1, Q2q proposes Q1 as the initial outcome and then at any time of a public deviation,
proposes to start the punishment outcome Qi if the deviation was made by Player i;

• E2pQ1, Q2q proposes Q2 as the initial outcome and then at any time of a public deviation,
proposes to start the punishment outcome Qi if the deviation was made by Player i;

• in both E1pQ1, Q2q and E2pQ1, Q2q, if public deviations are made by both players simultane-
ously, the prescribed punishment is Q1.

Notice that for any two punishment outcomes Q1 and Q2, the agreements E1pQ1, Q2q and
E2pQ1, Q2q are measurable.

The following theorem establishes the existence of the optimal penal codes in the current setting.
It is my second main result.

Theorem 2 (Optimal Penal Code). Suppose that Assumptions 1, 2, 3, and 4 are satisfied. Then
there exist ε̄ ą 0 and public outcomes Q1 and Q2 such that for any ε P p0, ε̄q,

1. Q1 and Q2 are punishment outcomes with inertia parameter ε;

2. E1pQ1, Q2q and E2pQ1, Q2q are self-enforcing public agreements;

3. E1pQ1, Q2q and E2pQ1, Q2q deliver the minmax payoffs to Players 1 and 2 correspondingly,

@i “ 1, 2, W i,EipQ1,Q2q “ vi.

Proof. See Appendix B.4 for a constructive proof.

3.3 Characterization of the Payoff Set

In this subsection, I provide the characterization of Kpεq, the set of payoffs attainable in self-
enforcing public agreements for sufficiently small inertia parameters ε.

Denote by IR the set of all individually rational payoffs, IR “ tpw1, w2q P R2 : |pw1 ě v1q ^

pw2 ě v2qu. In the previous subsection, I showed that Kpεq consists of individually rational payoffs,
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Kpεq Ď IR. For any pair of payoffs w “ pw1, w2q P R2, define the set Cpwq as the set of all payoffs
that can be obtained from w by subtracting positive linear combinations of the money-transfer
vectors p1,´kq and p´k, 1q,

Cpwq “
 

px1, x2q P R2| Dλ1 ě 0 Dλ2 ě 0 : px1, x2q “ pw1, w2q ´ λ1p1,´kq ´ λ2p´k, 1q
(

.

The notion of a comprehensive set then is defined as follows:

Definition (Comprehensive Set). A subset S of the set of individually rational payoffs IR is called
comprehensive if

@w P S, Cpwq X IR Ď S.

The next lemma shows that Kpεq is a comprehensive subset of IR.

Lemma 3 (Comprehension). Under Assumptions 1, 2, 3, and 4, there exists ε̄ ą 0 such that for
any ε P p0, ε̄q, the set Kpεq is comprehensive.

Proof. Take the initial outcome of a self-enforcing agreement E with payoffs pw1, w2q P Kpεq. For
individually rational payoffs pw11, w12q “ pw1, w2q ´ α1p1,´kq ´ α2p´k, 1q, construct the outcome,
which at the beginning, requires Player 1 to send α1 amount of money and Player 2 to send α2

amount of money, and then implements the initial outcome of E . Support this outcome by an
optimal penal code from Theorem 2. By Theorem 1, this agreement is also self-enforcing with
uniformly non-manipulable outcomes.

Lemma 4 (Stabilization). Under Assumptions 1, 2, 3, and 4, there exists ε̄ ą 0 such that for all
ε P p0, ε̄q, the set Kpεq is the same.

Proof. By Theorem 1, the set of outcomes supportable in self-enforcing agreements is the same
for all inertia parameters, for which there exists an optimal penal code. The rest follows from
Theorem 2.

Lemma 5 (Convexity). For any ε ą 0, the set Kpεq is convex.

Proof. By the standard argument of convexification through an initial public randomization.

Lemma 6 (Inclusion). For any ε ą 0, the set Kpεq includes p-PPE payoffs from Sannikov (2007).

Proof. Take any p-PPE from Sannikov (2007) resulting in an outcome Q. Construct the agreement
E which specifies Q as the initial outcome. As Q prescribes no positive transfers, there are no
public deviations allowed for the players. Hence, E does not need to specify punishment outcomes.
Conditions of Theorem 1 then simplify to the incentive compatibility conditions of Proposition 2
in Sannikov (2007), which are supposed to be satisfied for Q. Also, as there are no punishment
outcomes, the inertia restriction is vacuous. Q.E.D.
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Denote by B`Kpεq the part of the boundary of Kpεq which lies strictly above the minmax lines
of the players. Take any point w “ pw1, w2q P B`Kpεq. Let Tpwq and Npwq denote the unit tangent
and outward normal vectors for B`Kpεq at w. As Kpεq is convex, these vectors are uniquely defined
for all but at most countably many points of B`Kpεq. Let κpwq be the curvature of B`Kpεq at w.
Recall that φpa,Tq denotes the vector of volatilities that enforces action profile a along vector T
and has the smallest length. If a is not enforceable along T, set |φpa,Tq| “ 8. Also, let AN be the
set of pure-strategy Nash equilibria (p-NEs) of the stage game G. Let N be the convex hull of the
payoffs from AN . The following equation is the optimality equation of Sannikov (2007):

κpwq “ max
!

0; max
aPpA1ˆA2qzAN

2Npwqpgpaq ´ wq
r|φpa,Tpwqq|2

)

. (4)

Sannikov (2007) shows that in his setting, the boundary of the set of p-PPE payoffs satisfies the
optimality equation at each point outside of N . The following is an analogous result for my model:

Lemma 7 (Optimality Equation). Under Assumptions 1, 2, 3, and 4, for any ε ą 0, at all points
outside of N , B`Kpεq satisfies the optimality equation (4). Moreover, for each i “ 1, 2, B`Kpεq
enters the minmax line of Player i either at payoffs corresponding to a p-NE of the stage game or
tangent to the corresponding money-transfer vector, p1,´kq for Player 1 and p´k, 1q for Player 2.

Proof. The proof is similar to the proof of Proposition 5 in Sannikov (2007). In fact, the proof that
the curvature of B`Kpεq can not be smaller than the one prescribed by the optimality equation
is almost exactly the same. The proof that the curvature can not be greater than the one in the
optimality equation, i.e., “the escape argument”, differs in the current setting by the introduction of
pushes of continuation values caused by the money transfers. However, as Kpεq is comprehensive, at
any point along B`Kpεq, the outward normal vector is positively correlated with the money-transfer
pushes. Thus, these pushes can only make the escape argument more compelling. See Appendix C.1
for the formal argument.

The above lemmata are summarized in the theorem below, which is my third main result.

Theorem 3 (Payoff-Set Characterization). Under Assumptions 1, 2, 3, and 4, for any k P r0, 1q,
there exists ε̄ ą 0 such that for any inertia parameter ε P p0, ε̄q, the set Kpεq is the largest compact
set that satisfies the following properties:

1. Kpεq is a convex and comprehensive subset of the set of individually rational payoffs;

2. at all points outside of N , B`Kpεq satisfies the optimality equation (4), and for each i “ 1, 2,
B`Kpεq enters the minmax line of Player i either at payoffs corresponding to a p-NE of the
stage game or tangent to the corresponding money-transfer vector, p1,´kq for Player 1 and
p´k, 1q for Player 2.

Proof. See Appendix C.2.
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(a) the p-PPE payoff set S from Sannikov (2007). (b) Kpεq in the current setting.

Figure 1: Payoffs sets.

Figure 1 compares schematically the set S of p-PPE payoffs from Sannikov (2007) (Figure 1a)
and the corresponding set Kpεq from the current setting (Figure 1b). The blue polygon on both
pictures corresponds to the boundary of the convex hull of the stage-game payoffs; the red lines are
the players’ minmax lines; the green polygon is the boundary of the set V˚, the set of individually
rational and feasible-without-transfers payoffs. The blue solid shape in Figure 1a is the set S, the
red solid shape in Figure 1b is the corresponding set Kpεq. Note that S does not reach the players’
minmax lines unless there are p-NE payoffs on them. Also, S must lie inside of V˚. In contrast, in
the current setting, the set Kpεq reaches both minmax lines as long as the conditions of Theorem 2
are satisfied. Also, Kpεq may extend outside of V˚ as the feasible set is larger when money transfers
are available. The positive part of the boundary of Kpεq, B`Kpεq, is smooth at all points outside
of N and enters the minmax lines of the players either at p-NE payoffs or parallel to the money-
transfer vectors (the red dashed vectors in Figure 1b). Finally, B`Kpεq typically has strictly positive
curvature outside of N . The only exception to that that may be is if B`Kpεq contains a straight
segment, which starts at a player’s mixmax line, ends at a p-NE payoff, and is parallel to the
money-transfer vector of that player.

4 Discussion

In this section, I discuss the dynamics of in the optimal agreements in my main model, and also
consider models with fixed-cost and perfect transfers.

4.1 Optimal Agreements

I now discuss the dynamics in the optimal self-enforcing public agreements. Figure 2 depicts
schematically a typical path of continuation values along the initial outcome and punishments
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Figure 2: Punishing a deviation from Player 1, k “ 0.

in an efficient self-enforcing agreement in the case of pure money burning, k “ 0 (the picture for
0 ă k ă 1 looks similarly).

Unless there is a p-NE payoff on B`Kpεq, an agreement that delivers payoffs w P B`Kpεq starts
with W0 “ w and supports players’ incentives by the shift of promised continuation values along
B`Kpεq without costly transfers. The recommended profiles of hidden actions and volatilities of
continuation values are determined uniquely by the optimality equation (4). This continues until
the promised values hit the minmax line of either player. For example, point A in Figure 2 is the
point at which the continuation values hit the minmax line of Player 1. At point A, the agreement
introduces the reflective boundary for the process of promised continuation values following the
SDE from Proposition 1. To implement this reflective boundary, the agreement asks Player 1 to
burn (transfer in case 0 ă k ă 1) money so as to match the cumulative amount of money burnt, Γ1

t ,
with the compensating process of the reflected continuation values. In particular, money transfers
will be happening in infinitesimal installments and only after extreme histories, when it is no longer
possible to support incentives by the shift of promised continuation values without violating the
individual rationality constraint of Player 1.

Suppose that at point A, Player 1 announces a public deviation. In that case, the agreement will
go to the stage of punishing Player 1. This can be done using the construction from Theorem 2. An
alternative punishment is shown in Figure 2. The punishment starts by moving the continuation
values to point B. This will upset the promises made to Player 2, but this is permissible since
Player 2 is not the deviating player. The punishment outcome then supports minmaxing Player 1
by moving the promised continuation values along the minmax line of Player 1 until they hit either
C1 or C2. At C1, Player 1 is asked to burn money so as to jump to D1. Similarly, at C2, Player 1
is asked to burn money so as to jump to D2. The punishment outcome then is concatenated with
the initial outcomes of the efficient agreements that deliver D1 or D2 correspondingly. Theorem 1
ensures that the constructed agreement is self-enforcing.

There are two more things I want to say about the efficient self-enforcing agreements in the
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current setting. First, an efficient p-PPE in Sannikov (2007) is typically supported by the evolution
of promised continuation values that are eventually driven into the area Pareto dominated by other
p-PPE payoffs. This may raise concerns regarding the renegotiation proofness of such p-PPEs. In
contrast, in the current setting, on the path of play, the promised continuation values of an efficient
agreement will always stay on B`Kpεq, the Pareto frontier ofKpεq. Thus, the renegotiation-proofness
concerns are less severe in my model. Of course, punishing observable deviations still requires the
continuation values to plunge into Pareto-dominated areas. However, the “depth” of such plunges
may be made arbitrary small by considering the inertia parameters close to zero. Second, the
dynamics in the efficient agreements with costly transfers are in sharp contrast with the dynamics
in the efficient equilibria in repeated games with perfect transfers (such as Levin (2003), Goldlücke
and Kranz (2012)). With perfect transfers, the timing of transfers is not important. Thus, it may
be efficient to use them frequently (for example, at the end of every period). With costly transfers,
it is optimal to postpone them for as long as possible. Thus, costly transfers are used rarely, only
when the individual rationality constraint of either player becomes binding.

4.2 Fixed-Cost Transfers

In the base model, I assume that costs of money transfers are proportional to the amount of money
sent. Alternatively, one can consider a version with costs of transfers being fixed. Specifically,
suppose the players’ transfer technology is characterized by an exogenously given transfer cost
c ą 0. If at time t, Player i wants to deliver G ą 0 amount of money to the opponent, he has to
pay G ` c. The formal analysis of this model can be done by following essentially the same steps
as for the base model, albeit with some minor differences. The first difference is in the existence of
the optimal penal codes: the existence can be shown, provided transfer costs are sufficiently small.
The second difference is in the definition of a comprehensive set. Precisely, for any pair of payoffs
w “ pw1, w2q P R2, define the set

Ĉpw, cq “
!

px1, x2q P R2
ˇ

ˇ px1 ` x2 ď w1 ` w2 ´ cq ^
”

px1 ď w1 ´ cq _ px2 ď w2 ´ cq
ı)

.

The notion of a fixed-cost-c comprehensive set is defined as follows:

Definition (Fixed-Cost-c Comprehensive Set). A subset S of the set of individually rational payoffs
IR is called fixed-cost-c comprehensive if

@w P S, Ĉpw, cq X IR Ď S.

Denote byKpε, cq the set of payoffs attainable in self-enforcing agreements with inertia parameter
ε when fixed costs of money transfers are c ą 0. The payoff-set characterization for fixed-cost
transfers can be formulated as follows:

Theorem 31 (Payoff-Set Characterization for Fixed-Cost Transfers). Under Assumptions 1, 2, 3,
and 4, there exists c̄ ą 0 such that for any fixed costs of transfers c P p0, c̄q, there exists ε̄pcq ą 0 such
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that for any inertia parameter ε P p0, ε̄pcqq, the set Kpε, cq is the largest compact set that satisfies
the following properties:

1. Kpε, cq is a convex and a fixed-cost-c comprehensive subset of the set of individually rational
payoffs;

2. at all points outside of N , B`Kpε, cq satisfies the optimality equation (4), and B`Kpε, cq enters
the minmax line of each player either at payoffs pw1, w2q corresponding to a p-NE of the
stage game with w1 ` w2 ě max

px1,x2qPKpε,cq
px1 ` x2q ´ c or at a point pw1, w2q with w1 ` w2 “

max
px1,x2qPKpε,cq

px1 ` x2q ´ c.

As the proof of Theorem 31 does not seem to add any considerable insights relative to the proof
of Theorem 5, it is omitted. With fixed-cost transfers, the dynamics in the efficient agreements
are quite similar to the efficient dynamics with proportional costs. The incentives to cooperate are
supported whenever possible by the shifts of promised continuation values. Costly transfers are used
only after extreme histories when the promised continuation value of either player hits his individual
rationality constraint. The only difference is that with fixed costs, the transfers required at this
point are substantial in size so that to move the play immediately to the continuation values with
the highest supportable sum of payoffs. This differs from the optimal transfers with proportional
costs, which are used in small installments to just reflect from the minmax lines. The reason is that
with fixed costs, it is optimal to combine all costly transfers into a single transaction to save on the
transaction fee.

4.3 Perfect Transfers

It is reasonable to consider a version of the model with perfect transfers to parallel this continuous
setting with discrete-time models of, for example, Levin (2003) and Goldlücke and Kranz (2012).

First, consider the version, in which besides hidden productive actions, the players have access
to perfect transfers only. Denote by pa˚1 , a˚2q the most efficient enforceable profile (the one that
maximizes the players’ total surplus). Let M˚ “ g1pa

˚
1 , a

˚
2q ` g2pa

˚
1 , a

˚
2q be the maximal total

surplus that is enforceable. Denote by Lpεq the set of payoffs attainable in self-enforcing agreements
with inertia parameter ε with perfect transfers. The following theorem establishes a lower bound
on Lpεq and is parallel to the results from Levin (2003):

Theorem 4 (Cf. Levin (2003)). Let pw1, w2q be a p-NE payoff in the stage game G. Then Lpεq

contains segment T pw1, w2q, where

T pw1, w2q “
 

px1, x2q P R2|px1 ` x2 “M˚q ^ px1 ě w1q ^ px2 ě w2q
(

.

Proof. T pw1, w2q can be supported by enforcing the efficient action pa˚1 , a˚2q along it. The transfers
can be requested when the values hit either of the end points pxi “ w1q for i “ 1, 2. The transfers
can be such that they will send the values to the midpoint of T pw1, w2q. The transfers are supported
by the threat of reverting forever to the static equilibrium with payoffs pw1, w2q.
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Remarkably, if players can transfer money only perfectly, the set of supportable payoffs may
be quite restricted. If besides perfect transfers, some costly transfers are available, then the set
of supportable payoffs can become larger. The reason is that while inefficient transfers are never
used optimally on the path of play, they can be quite handy in constructing punishment outcomes.
For a certain range of payoffs, punishments may be constructed without costly transfers, by simply
requiring players to take inefficient actions. However, in general, costly transfers may substantially
expand the set of punishment outcomes, and therefore the set of outcomes supportable in self-
enforcing agreements.

Because of that, consider now the version in which, like in Goldlücke and Kranz (2012), the
players can take hidden actions, perfectly transfer money between each other, and also have access
to money burning, k “ 0. Outcomes in agreements now recommend not only hidden actions Ai and
cumulative money-transfer processes Γi, but also cumulative money-burning processes M i. Other
than that, this version is similar to the base model. Denote by GKpεq the set of payoffs that can
be supportable in self-enforcing agreements with inertia parameter ε in this version. The following
theorem provides the characterization of GKpεq for sufficiently small ε ą 0:

Theorem 5 (Cf. Goldlücke and Kranz (2012)). Under Assumptions 1, 2, 3, and 4, there exists
ε̄ ą 0 such that for any inertia parameter ε P p0, ε̄q, the set GKpεq is the triangle

GKpεq “
 

px1, x2q P R2|px1 ` x2 ďM˚q ^ px1 ě v1q ^ px2 ě v2q
(

.

The proof is a straightforward adaptation of the proof of Theorem 5 and so is omitted. It
is important, however, to empathize the major difference between the cases of perfect and costly
transfers: Perfect transfers can be used optimally at any time provided the promised payoffs stay
above the minmax lines. With costly transfers, there is an additional trade-off between providing
incentives through money transfers today and postponing their costs into the future. Optimally,
the use of costly transfers is delayed for as long as possible.

References

Abreu, D. (1988). On the theory of infinitely repeated games with discounting. Econometrica 56 (2),
383–396.

Abreu, D., D. Pearce, and E. Stacchetti (1986). Optimal cartel equilibria with imperfect monitoring.
Journal of Economic Theory 39, 251–269.

Baker, G., R. Gibbons, and K. Murphy (2002). Relational contracts and the theory of the firm.
Quarterly Journal of Economics 2, 39–84.

Bergin, J. and W. B. MacLeod (1993). Continuous time repeated games. International Economic
Review 34 (1), 21–37.

Chavez, I. (2019). Privacy in bargaining: The case of endogenous entry. Working Paper .

Daly, B. and B. Green (2018). Bargaining and news. Working Paper .

27



Fong, Y.-F. and J. Surti (2009). On the optimal degree of cooperation in the repeated prisoner’s
dilemma with side payments. Games and Economic Behavior 67 (1), 277–291.

Fudenberg, D., D. Levine, and E. Maskin (1994). The folk theorem with imperfect public informa-
tion. Econometrica 62 (5), 997–1039.

Goldlücke, S. and S. Kranz (2012). Infinitely repeated games with public monitoring and transfers.
Journal of Economics Theory 147 (3), 1191–1221.
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A Proof of Theorem 1

Sufficiency.
Take any agreement E . Suppose that it satisfies both restrictions of the One-Stage Deviation

Principle. We will prove that E is self-enforcing. Indeed, consider any strategy σ for any Player i.
As the upper bound on the value of σ is the limsup of the upper bounds on the values of its finite
truncations, it is sufficient for us to check that V ˚pσ,Qq ď W i,Q for any Q P E and for any σ that
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prescribes only finitely many observable deviations. We do so by induction in L, the number of
observable deviations prescribed by σ.

Base: L “ 0. Suppose σ does not prescribe any observable deviation. Then V ˚pσ,Qq ď W i,Q

may be proven using the One-Stage Deviation in Hidden Actions restriction alone. In fact, the proof
essentially repeats the proof of Proposition 2 from Sannikov (2007) because the money-transfer
processes cancel out when we evaluate the effect on Player i’s payoff caused by the change in
hidden-action profile!

Induction: Suppose that V ˚pσ,Qq ď W i,Q for any σ prescribing less that L “ l observable
deviations. Prove for σ that prescribes L “ l observable deviations. Take any outcome Q P E .
Recall the definition of V ˚pσ,Qq,

V ˚pσ,Qq “ EPpAi,Q,σ ,A´i,Qq
”

r

T i,Q
ż

0

e´rs
`

gipA
i,Q,σ
s , A´i,Qs qds´dΓi,Qs `k dΓ´i,Qs

˘

´rΓi,Q0 `rkΓ´i,Q0

ı

`

`

´

EPpAi,Q,σ ,A´i,Qq
¯˚”

e´rT
i,Q

´

V ˚
`

σ, Q̃pT i,Q, ωq
˘

` r∆Γi,Q
T i,Q

´ rk∆Γ´i,Q
T i,Q

¯ı

.

Starting from the punishment Q̃
`

T i,Q
˘

that follows immediately after Player i deviates from
Q at T i,Q, σ prescribes at most l ´ 1 observable deviations. By the induction hypothesis then,
V ˚

`

σ, Q̃pT i,Q, ωq
˘

ďW i,Q̃pT i,Q,ωq. Therefore,

V ˚pσ,Qq ď EPpAi,Q,σ ,A´i,Qq
”

r

T i,Q
ż

0

e´rs
`

gipA
i,Q,σ
s , A´i,Qs qds´dΓi,Qs `k dΓ´i,Qs

˘

´rΓi,Q0 `rkΓ´i,Q0

ı

`

`

´

EPpAi,Q,σ ,A´i,Qq
¯˚”

e´rT
i,Q

´

W i,Q̃pT i,Q,ωq ` r∆Γi,Q
T i,Q

´ rk∆Γ´i,Q
T i,Q

¯ı

.

Applying the One-Stage Deviation in Observable Actions restriction to outcome Q and stopping
time T i,Q, we get that

V ˚pσ,Qq ď EPpAi,Q,σ ,A´i,Qq
”

r

T i,Q
ż

0

e´rs
`

gipA
i,Q,σ
s , A´i,Qs qds´dΓi,Qs `k dΓ´i,Qs

˘

´rΓi,Q0 `rkΓ´i,Q0

ı

`

` EPpAi,Q,σ ,A´i,Qq
”

e´rT
i,Q
W i,Q
T i,Q

ı

.

But the RHS of the above inequality is the value evaluated at the beginning of Q of the strategy
that prescribes to follow σ until the moment of the first observable deviation and then instead of
announcing this deviation, to abide to Q. By the base of induction, this value is weakly belowW i,Q.
Thus, V ˚pσ,Qq ďW i,Q.

Necessity of 1.
Suppose, E fails the One-Stage Deviation in Hidden Actions restriction. Then a profitable

deviation σ can be constructed by deviating only in hidden actions within a given outcome Q,
similarly to how it can be done in Sannikov (2007). Moreover, the value of this deviating strategy
can be computed with the usual integrals so that V ˚pσ,Qq “ V˚pσ,Qq ąW i,Q.

Necessity of 2.
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Suppose, E fails the One-Stage Deviation in Observable Actions restriction. Suppose the re-
striction fails for some outcome Q P E , Player i, and stopping time T . Consider the function
fpωq “ e´rT pωq

´

W i,Q̃pT q` r∆Γi,QT ´ rk∆Γ´i,QT ´W i,Q
T ∆Γ´i,QT

¯

, the discounted instantaneous gains

from observably deviating at time T pωq. Then, tω P ΩQ : fpωq ą 0u is not pFT ,PQq-measure
zero set. Then Dδ1 ą 0, Dδ2 ą 0 such that the set Bpδ1q “ tω P ΩQ : fpωq ą δ1u has PQ-
outer measure relative to FT equal to δ2. As the stage-games payoffs are bounded and all money-
transfer processes in E are uniformly non-manipulable, there exists a lower bound K such that
W i,Q̃pT q ě K on tω P ΩQ : T pωq ă 8u. Take then a set C Ď tω : T pωq ă 8u such that C is
FT -measurable, Bpδ1q Ă C, and PQpCq ă δ2 `

δ1δ2
|K| . Consider the strategy σ for Player i prescrib-

ing no deviations in hidden actions and just one deviation in observable actions from outcome Q
at T̂ “ T ¨ 1C `8 ¨ 1ΩQzC . This value of this strategy evaluated at the beginning of Q is at least
V ˚pσ,Qq ą W i,Q ` δ1δ2 ` K ¨ δ1δ2

|K| ě W i,Q. Thus, σ is a profitable deviation. The first part is
proven.

Suppose further that E is measurable. Suppose the restriction fails for some outcome Q P E ,
Player i and stopping time T . Consider the set B “ tω P ΩQ : W i,Q

T ă W i,Q̃pT q ` r∆Γi,QT ´

rk∆Γ´i,QT u. By measurability of E , B is an FQT -measurable event. By the failure of the One-
Stage Deviation in Observable Actions restriction, PrP

Q
pBq ą 0. Define the stopping time T̂ “

T ¨ 1B ` 8 ¨ 1ΩQzB. Consider the strategy σ for Player i that prescribes no deviations in hidden
actions and just one observable deviation from Q at T̂ . Clearly, this strategy will be a profitable
deviation with V ˚pσ,Qq “ V˚pσ,Qq ąW i,Q.

B Proof of Theorem 2

B.1 Proof of Lemma 1

Take any point pw1, w2q P Kpε1q. This point can be achieved as the expected payoff in some self-
enforcing agreement E with inertia parameter ε1. But then, E is also a self-enforcing agreement
with inertia parameter ε2 because it satisfies the conditions of Theorem 1 and because the ε2-inertia
restriction is less restrictive than the ε1-inertia for ε2 ă ε1. Thus, pw1, w2q P Kpε2q.

B.2 Proof of Lemma 2

Clearly, the second statement in the formulation of Lemma 2 implies the first one. So it is sufficient
to show that the second statement is correct. Suppose on the contrary that there is a public
outcome Q in a self-enforcing agreement E , a stopping time τ in Q, and Player i such that W i,Q

τ ě

vi`r∆Γi,Qτ ´rk∆Γ´i,Qτ is violated on an event A P FQτ of positive probability. Consider the following
deviating strategy for Player i: follow the plan of actions and transfers suggested in Q on the event
“not A”; on the event A, follow the proposed plans until τ and then switch to “dropping out from
the cooperation," i.e., start always playing a hidden action that is a myopic best response against
the current action of the opponent and always announce to refuse to send positive transfers if asked
by the agreement. Notice, that the switch to the dropping-out regime happens only after time τ ,
at which point Player i will know whether A has happened or not. Thus, so described strategy
for Player i is indeed a well-defined public strategy. Yet, this strategy will be a strictly profitable
deviation, which contradicts the assumption that E is self-enforcing. Q.E.D.
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B.3 Concatenation of Outcomes

In this subsection, I show how having two public outcomes Qα and Qβ and a stopping time τα in
outcome Qα, one can construct the concatenated outcome ConpQα, Qβ, ταq which corresponds to
the play of QA in the beginning until the time hits τα and then switches to the beginning of QB.

Suppose we are given two outcomes Qα “ tPQα , AQα ,ΓQαu and Qβ “ tPQβ , AQβ ,ΓQβu. Sup-
pose τα is a stopping time in PQα at which the play should switch from Qα to Qβ . Let us construct
the concatenated outcome ConpQα, Qβ, ταq “ tP,A,Γu:

• The state-space Ω for the concatenated outcome is the direct product of the state-spaces of
Qα and Qβ , i.e., Ω “ tω “ pω1, ω2q : ω1 P ΩQα , ω2 P ΩQβu.

• The probability measureP for the concatenated outcome is the direct productP “ PQαbPQβ .

• The moment of switch τ corresponds to τα, i.e., τpω1, ω2q “ ταpω1q.

• The public filtration pF , tFtutě0q is the following,

– F “ σpFQα b FQβ q;
– Ft consists of all those events A P F such that for any 0 ď s1 ď s2 ď t, the event
AX

 

s1 ď τ ď s2

(

belongs to the σ-algebra σpFQ
α

s2 b FQ
β

t´s1
q and the event AX tτ ą tu

belongs to FQ
α

t b tH,ΩQβu.

• The public signal Xt is Xtpω1, ω2q “ XQα

t pω1q ¨ 1τět `

´

XQα
τ pω1q `X

Qβ

t´τ pω2q

¯

¨ 1τăt.

• The recommended hidden actions At are Atpω1, ω2q “ AQ
α

t pω1q ¨ 1τăt `A
Qβ

t´τ pω2q ¨ 1τět.

• The recommended cumulative money transfers Γt are Γt “ ΓQ
α

t pω1q ¨ 1τăt `

´

ΓQ
α

τ pω1q `

ΓQ
β

t´τ pω2

¯

¨ 1τět. Note that the switch happens only after the transfers recommended at time
τα in Qα are processed.

In this construction, Xt´
şt
0 µpAsqds is a d-dimensional Brownian motion under P, the processes

At are progressively measurable for pF , tFtutě0q, and Γt are weakly-increasing nonnegative RCLL-
processes adapted to pF , tFtutě0q. Thus, ConpQα, Qβ, ταq is a public outcome.

B.4 Proof of Theorem 2

By Assumption 1, there exists a self-enforcing agreement E delivering payoffs pw1, w2q with w1 ą v1

and w2 ą v2. Let Q0 be the initial outcome of E . By Lemma 2, we can find a modification
for the processes of hidden actions pA1

t , A
2
t q and the processes of promised continuation values

pW 1,Q0

t ,W 2,Q0
q such that the One-Stage Deviation in Hidden Actions and the restriction @i “

1, 2,W i,Q0

t ě vi ` r∆Γi,Q
0

t ´ rk∆Γ´i,Q
0

t are satisfied always.
I will now construct the required Q1 and Q2.
Let us construct Q1, the harshest punishment for Player 1:
Suppose first that the minmaxing profile a “ pa1, a2q for Player 1 is a Nash Equilibrium of the

stage game. Then set Q1 to be the public outcome corresponding to the play of pa1, a2q forever
with zero volatility of promised continuation values,

`

W 1,Q1

t ,W 2,Q1

t

˘

“
`

g1paq, g2paq
˘

.
Suppose now that the profile a “ pa1, a2q minmaxing Player 1 is not a Nash equilibrium, but

only enforceable. Then the construction is the following. Set L1 “ pv1, w2 ` kpw1 ´ v1qq and
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L2 “
`

v1, v2 ` kpw1 ´ v1q ` k
2pw2 ´ v2q

˘

. As 0 ď k ă 1, L1 is strictly above L2. For the beginning
of the outcome, call it Q, set pW 1

0 ,W
2
0 q “

L1`L2
2 . Recommend the players to play the minmaxing

profile pa1, a2q enforcing it along the vector p0, 1q and requiring no money transfers. I.e., set the
matrix B “ p0, 1qJφpa, p0, 1qq. Construct pW 1

t ,W
2
t q as a continuous weak solution to the system of

SDE’s

dW i
t “ rpW i

t ´ gipaqqdt`B
ipdXt ´ µpaqdtq.

Notice that for this solution, we will always have constant W 1
t “ v1. Thus, the solution pW 1

t ,W
2
t q

moves along the minmax line of Player 1. Consider the stopping time τ , the first time when pW 1
t ,W

2
t q

hits either L1 or L2. At L1, require that the players send transfers pw1 ´ v1, 0q, at L2, require that
they send transfers

`

w1 ´ v1 ` kpw2 ´ v2q, w2 ´ v2

˘

. Then stop the outcome Q and start playing
the outcome Q0. Define Q1 as the concatenated outcome, Q1 “ ConpQ,Q0, τq. Set the process of
promised continuation values in the concatenated outcome as the concatenation of the processes of
promised continuation values from Q and Q0. Clearly, these processes will satisfy representation (1)
and so they are indeed the processes of promised continuation values for Q1. Moreover, Q1 satisfies
the One-Stage Deviation in Hidden Action restriction. Indeed, in the beginning, it is satisfied by
enforceability of pa1, a2q, and after the switch, it is satisfied for Q0. Yet, Q1 delivers the worst
possible payoff to Player 1, W 1,Q1

“ v1.
The outcome Q2 for punishing Player 2 is constructed analogously.
Next, Q1 does not require any transfers until the hitting time τ . As the incentives until τ are

enforced by the constant matrix of volatilities, there exists ε1 ą 0 such that Q1 is a punishment
outcome for any inertia parameter ε P p0, ε1q. Similarly, there exists ε2 ą 0 such that Q2 is a
punishment outcome for any inertia parameter ε P p0, ε2q. Set the required ε̄ “ mintε1, ε2u.

Finally, the agreements E1pQ1, Q2q and E2pQ1, Q2q satisfy the One-Stage Deviation in Observ-
able Action restriction. Indeed, by construction, the processes of continuation values plus the current
transfers always stay above the minmax payoffs pv1, v2q, exactly the payoffs promised to the players
in case either of them deviates. Therefore, E1pQ1, Q2q and E2pQ1, Q2q are self-enforcing. Q.E.D.

C Proof of Theorem 5

C.1 Proof of Lemma 7

The proof is similar to the proof of Proposition 5 from Sannikov (2007). Indeed, notice first that
the following adaptation of Proposition 3 from Sannikov (2007) applies to our case.

Proposition 31. Suppose that a curve C satisfies the optimality equation (4). Suppose further that
C has endpoints which are attainable as payoffs in self-enforcing agreements with inertia parameter
ε. Then any point in C is attainable as the payoff of a self-enforcing public agreement with inertia
parameter ε, i.e., C Ď Kpεq.

Proof. The construction in the proof is similar to the one used in the proof of Theorem 2. If the curve
C has positive curvature, then the idea is to take any point w P C and to construct the beginning
of the outcome by supporting incentives without money-transfers, solely by the drift-diffusion of
the promised continuation values along C until the values hit either of the endpoints of C (exactly
how it is done in Sannikov (2007)). After that, use the concatenation with the initial outcomes
of the corresponding self-enforcing agreements. Theorem 1 then will insure that so constructed
outcome will be supportable in a self-enforcing agreement and will deliver to the players payoffs w.
If C is a segment of a straight line, then w can be obtained as a public randomization between the
agreements corresponding to the end points of C. And so w will indeed be in Kpεq.
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Then, notice that the following variant of Lemma 8 from Sannikov (2007) is valid in the current
setting:

Lemma 81. Consider a point w P B`KpεqzN with the outward normal vector N. Then the curve
C, which solves the optimality equation (4) with initial conditions pw,Nq does not enter the interior
of Kpεq.

Proof. The proof uses Proposition 31 and is otherwise the same as the proof of Lemma 8 in Sannikov
(2007).

Thus, indeed, the curvature of B`Kpεq can not be smaller than the one prescribed by the
optimality equation (4). To prove that the curvature of B`Kpεq can not be greater than the one in
the optimality equation (4), we use the following adaptation of Lemma 61 from Hashimoto (2010).

Lemma 62. It is impossible for a solution C1 of the optimality equation (4) with endpoints vL and
vH to satisfy the following properties simultaneously:

1. There is a unit vector N̂ such that @x ą 0, vL ` xN̂ R Kpεq and vH ` xN̂ R Kpεq.

2. For all w P C1 with an outward unit normal Npwq for C1 at w, we have

max
vNPN

NpwqvN ă Npwqw.

3. C1 “cuts through” Kpεq, that is, there exists a point v P C1 such that W0 “ v ` xN̂ P Kpεq for
some x ą 0.

4. infwPC1N̂NpwqJ ą 0, where Npwq is the outward normal vector for C1 at w.

5. N̂ is positively correlated with the money-transfer vectors, N̂ ¨ p1,´kq ě 0 and N̂ ¨ p´k, 1q ě 0.

Proof. The proof almost exactly repeats the proof from Hashimoto (2010). The only difference now
is that with money transfers, the RHS of the Ito formula in footnote 2 of Hashimoto (2010) will

have an extra term, Pt “
t
ş

0

p1,´kq ¨ N̂ dΓ1
s`

t
ş

0

p´k, 1q ¨ N̂ dΓ2
s`p1,´kq ¨ N̂ ∆Γ1

0`p´k, 1q ¨ N̂ ∆Γ2
0.

But since N̂ is positively correlated with both p1,´kq and p´k, 1q, the term Pt is nonnegative.
Therefore, equation (6) from Hashimoto (2010) still applies in our case and the rest of his proof
works.

To finish the proof of Lemma 7, take ε small enough that an optimal penal code exists. Take any
point w P B`KpεqzN . Set N̂ to be any outward unit-normal vector for B`Kpεq at w. By Lemma 3,
the set Kpεq is comprehensive, and so N̂ is positively correlated with both p1,´kq and p´k, 1q. If
the curvature of B`Kpεq at w is greater than the one prescribed by the optimality equation or if
B`Kpεq has a kink at w, then apply Lemma 62 for w, N̂ and a solution C1 which starts inside of
Kpεq with the initial normal N̂ very close to w. This will lead to a contradiction. Therefore, the
curvature of B`Kpεq at w must indeed be given by the optimality equation.

Finally, suppose B`Kpεq enters the minmax line for Player 1 at a point w outside of N . We
need to show then that B`Kpεq is tangent to p1,´kq at w. Indeed, as Kpεq is comprehensive, the
slope of B`Kpεq at w must be at least as steep as ´ 1

k . But if that slop is even steeper, then we can
apply Lemma 62 for w, N̂ “ p k?

1`k2 ,
1?

1`k2 q, and a solution starting inside Kpεq in the vicinity of
w, which would yield a contradiction. Similarly, B`Kpεq must enter the minmax line for Player 2
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either at a point from N or tangent to p´k, 1q. To finish the proof, it remains to notice that any
point from N that is also an extreme point of Kpεq must correspond to the payoffs of some p-NE.
Q.E.D.

C.2 Proof of Theorem 5

By Lemmata 3, 4, 5, 6, and 7, we already know that the set Kpεq must satisfy properties 1 and 2
from Theorem 5. It remains to show the converse, if K is a bounded set satisfying properties 1 and
2, then clpKq Ď Kpεq.

Indeed, take any w P B`K. Let us construct an outcome Q0 that will satisfy the One-Stage
deviation restriction in Hidden Actions and deliver to the players the payoffs equal to w. There
could be three different cases.

Case 1: w P N . Then take Q0 as the initial public randomization among p-NE’s of the stage
game that would yield w followed by the infinite repetition of the corresponding realized p-NE
without money transfers.

Case 2: w P B`KzN and the curvature of B`K is strictly positive at w. Then start Q0 as
a weak solution to representation (1) with W0 “ w that moves along the curve C, which is the
solution to the optimality equation (4) with the initial condition (w, Npwq). The underlying action
profile is going to be determined as the maximizer in the optimality equation. As the volatility
along CzN is uniformly bounded away from 0, the curve C eventually hits either a payoff from N or
the minmax of either of the players. In the former case, concatenate the play with the subsequent
randomization and indefinite play of the realized p-NE. In the later, when C hits the minmax line
of Player i at point v, introduce money transfers from Player i made with the retention parameter
k such that they coincide with the pushing process of Wt on C with the reflection boundary at v.
So constructed money-transfer processes will be M -nonmanipulable for some M ą 0. Indeed, if the
reflexion happens only on one end of C, then the rate of growth of the transfers as time t Ñ 8 is
that of order

?
t. If the reflexion happens on both ends, the rate of growth is of order t. As there

are only finitely many hidden action profiles and as the volatility of Wt is uniformly bounded on
C, there will exist a constant C ą 0, such that for any t ą 0, any manipulations with the drift of
the public signal can not increase either of the cumulative transfers by more than Ct. Since the
interest rate r ą 0, the money-transfers processes indeed will be nonmanipulable. Thus, Q0 will be
the required public outcome. Support Q0 by the optimal penal code from Theorem 2. This will
give us a self-enforcing agreement with payoffs w.

Case 3: w P B`KzN , but the curvature of B`K at w is 0. Then the solution to the optimality
equation with the initial condition (w, Npwq) is a straight line. As Kpεq is bounded, this solution
has to stop somewhere. If both of the endpoints are in N , then w can be obtained by initial public
randomization between the agreements corresponding to this two endpoints. If one of the endpoints
is on minmax line of Player i, while another is in N , then w can be obtained in the agreement which
first asks Player i to transfer positive amount of money to jump to the endpoint in N , and then
follows with the agreement corresponding to this end point. Finally, as k ‰ 1, it is not possible for
a straight solution C to enter both minmax lines while at the same time being parallel to p1,´kq
and p´k, 1q.

Now, if w is an end point of B`K which is not in N , we can construct an agreement by using
the money transfers to push away from the minmax lines similarly to how it is done in Case 2.

Finally, any point that may be obtained from clpB`Kq by subtracting the money-transfer vectors
will also belong to Kpεq by Lemma 3.

Thus, clpKq Ď Kpεq. Q.E.D.
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