







# Mixing Social Network Analysis with Structural Topic Modeling:

The case of Internet regulation coverage in the Russian media

Olga Silyutina oyasilyutina@gmail.com Anna Shirokanova a.shirokanova@hse.ru

National Research University Higher School of Economics

Saint-Petersburg, 2018

## Outline

- 1. Mixing methods in text analysis
- 2. STM:
  - Searching for the K
  - Correlation between topics
  - Effect estimation
- 2. Covariates:
  - Entity extraction
  - Case of countries and years
- 3. Networks
  - Social networks
  - Clusterization
- 4. Empirical case: Internet regulation coverage in Russia

# Mixing Methods in Text Analyses

#### Traditional way to go:

Quantitative content analysis + interpretation of meanings (qual) OR: development of categories (qual) + content analysis (quant)

#### Problem:

Human coding (workload / time / reliability)

#### One solution:

Semi-automated structural topic modeling, STM (Roberts et al., 2013) *Topic* is a vocabulary representing semantically interpretable 'themes'

- STM infers topics from the documents taking into account document properties, e.g. author's gender, date of publishing, etc.
- STM discovers topics from texts rather than assuming them in advance (no pushing of categories)

Applications: mapping multilingual reactions to political event across countries, processing open-ended questions, digital news archives, etc.

# Example of STM application



Texts: 27,248
Arab Muslim cleric writings with
(non-)Jihadi as covatiate (report-based)

Topics' correlation network:
edge width ~ correlation strength;
node size ~ # of words in corpus/topic;
blue-red palette ~ effect of covariate
(direction, strength)

(Lucas et al., 2015)

**Topic models** are a framework of statistical-based algorithms used to identify and measure latent topics within a corpus of text document (Wesslen)

# Structural topic modeling (Roberts et al. 2013)

- Document = mixture of topics
- User-specified covariates -> topical prevalence
- Topics are correlated
- Each document has its own prior distribution over topics
- Words in topics
   depends on covariates

#### Goal:

to allow researchers to discover topics and estimate their relationship to document metadata

#### Advantages for social science:

- Analysis of a large number of unstructured texts (Wesslen)
- Provision of hard evidence even for politicized topics' coverage (Shirokanova, Silyutina)

#### Limitations:

Usefulness depends on the correspondence between topics and the constructs of theoretical interest (Jacobi et al.)

### LDA

Document = mixture of topics

# Where Methodological Logics Clash

- Topics are extracted automatically, but <u>how many topics</u> to choose? (defined by researcher)
- Naming the topics (based on frequency-exclusivity metrics)
- Interpreting the correlations of topics and their 'communities'

## Data

**Data source:** Integrum (private digital archive 30 years deep, covers 64,000 media outlets)

Time span: 2009 to 2017

Sample: 7,240 texts, final sample after clearing: 6,140 texts

Covariates for different models:

- 48 countries co-occurred in pairs 100+ times
- political or non-political source

# Searching for the Right K\*

\*number of topics

There is no "right" answer to the number of topics which is appropriate for a given corpus (Grimmer, Stewart)

There is a strong positive relationship between the number of topics and the probability of topics being nonsensical (Mimno) more -> worse

stm::searchK()

#### var\$results:

held out likelihood residual analysis exclusivity semantic coherence

| K  | exclusivity | semantic<br>coherence | heldout | residual | bound     | lbound    | num its |
|----|-------------|-----------------------|---------|----------|-----------|-----------|---------|
| 30 | 9.62        | -57.5                 | -9.1    | 6.47     | -22487226 | -22487151 | 86      |
| 50 | 9.74        | -60.3                 | -9.11   | 5.16     | -21954014 | -21953866 | 86      |
| 70 | 9.8         | -65.3                 | -9.08   | 4.88     | -21607059 | -21606828 | 67      |
| 90 | 9.83        | -65.4                 | -9.14   | 5.89     | -21348428 | -21348112 | 67      |

# **Entity** extraction

Automatically revealing important information from the text (dates, places, organizations)

Our case:

countries

years

Solution:

dictionary

Assign the most frequent country in document as meta data -> example of covariates

## Correlation network of countries



## Co-occurrence network



co-occurrence of countries in texts + fast-greedy

## Estimation of covariate effect



Correlation network of topics

Edges: positive, significant

correlations

Nodes: topics

**Clusterization:** fast-greedy





# Correlation network of topics





## Conclusions

Topic segmentation is part of natural language processing tasks. It can help substantive goals in social/behavioral sciences

Inferring (correlated) topics from texts, STM largely improves text coding experience, reliability and reproducibility of results

"Mixing" resides in the iterations of finding model solutions / interpreting the topics and their correlations in 'communities'

Pros: ready-made software, time-saving, coder-independent Requirements: understanding of data for choice of covariates, K-number, and interpretation

## References

Roberts, M. E., Stewart, B. M., Tingley, D., Lucas, C., Leder-Luis, J., Gadarian, S. K., ... & Rand, D. G. (2014). Structural topic models for open-ended survey responses. *American Journal of Political Science*, 58(4), 1064-1082.

Lucas, C., Nielsen, R. A., Roberts, M. E., Stewart, B. M., Storer, A., & Tingley, D. (2015). Computer-assisted text analysis for comparative politics. *Political Analysis*, 23(2), 254-277.

Jacobi, C., van Atteveldt, W., & Welbers, K. (2016). Quantitative analysis of large amounts of journalistic texts using topic modelling. *Digital Journalism*, 4(1), 89-106.

Wesslen, R. (2018). Computer-Assisted Text Analysis for Social Science: Topic Models and Beyond. *arXiv preprint arXiv:1803.11045*.

# Thank you for your attention!